The recent development of accurate and efficient semilocal density functionals on the third rung of Jacob’s ladder of density functional theory, such as the revised regularized strongly constrained and appropriately normed (r2SCAN) density functional, could enable rapid and highly reliable prediction of the elasticity and temperature dependence of thermophysical parameters of refractory elements and their intermetallic compounds using the quasi-harmonic approximation (QHA). Here, we present a comparative evaluation of equilibrium cell volumes, cohesive energy, mechanical moduli, and thermophysical properties (Debye temperature and thermal expansion coefficient) for 22 transition metals using semilocal density functionals, including the local density approximation (LDA), Perdew–Burke–Ernzerhof (PBE) and PBEsol generalized gradient approximations (GGAs), and the r2SCAN meta-GGA. PBEsol and r2SCAN deliver the same level of accuracies for structural, mechanical, and thermophysical properties. PBE and r2SCAN perform better than LDA and PBEsol for calculating cohesive energies of transition metals. Among the tested density functionals, r2SCAN provides an overall well-balanced performance for reliably computing cell volumes, cohesive energies, mechanical properties, and thermophysical properties of various 3d, 4d, and 5d transition metals using QHA. Therefore, we recommend that r2SCAN could be employed as a workhorse method to evaluate thermophysical properties of transition metal compounds and alloys in high throughput workflows.

1.
M. B.
Henderson
,
D.
Arrell
,
R.
Larsson
,
M.
Heobel
, and
G.
Marchant
, “
Nickel based superalloy welding practices for industrial gas turbine applications
,”
Sci. Technol. Weld. Joining
9
(
1
),
13
21
(
2004
).
2.
A. M.
Mateo Garcia
, “
BLISK fabrication by linear friction welding
,” in
Advances in Gas Turbine Technology
(
IntechOpen
,
2011
).
3.
L.
Zhu
,
N.
Li
, and
P. R. N.
Childs
, “
Light-weighting in aerospace component and system design
,”
Propul. Power Res.
7
(
2
),
103
119
(
2018
).
4.
T.
Wu
,
M.
Sun
,
H.
Wong
, and
B.
Huang
, “
Decoding of crystal synthesis of fcc-hcp reversible transition for metals: Theoretical mechanistic study from facet control to phase transition engineering
,”
Nano Energy
85
,
106026
(
2021
).
5.
P. H. T.
Philipsen
and
E. J.
Baerends
, “
Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations
,”
Phys. Rev. B
54
(
8
),
5326
(
1996
).
6.
N. K.
Nepal
,
S.
Adhikari
,
J. E.
Bates
, and
A.
Ruzsinszky
, “
Treating different bonding situations: Revisiting Au-Cu alloys using the random phase approximation
,”
Phys. Rev. B
100
(
4
),
045135
(
2019
).
7.
M.
Ekholm
,
D.
Gambino
,
H. J. M.
Jönsson
,
F.
Tasnádi
,
B.
Alling
, and
I. A.
Abrikosov
, “
Assessing the SCAN functional for itinerant electron ferromagnets
,”
Phys. Rev. B
98
(
9
),
094413
(
2018
).
8.
Y.
Fu
and
D. J.
Singh
, “
Applicability of the strongly constrained and appropriately normed density functional to transition-metal magnetism
,”
Phys. Rev. Lett.
121
(
20
),
207201
(
2018
).
9.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
, “
Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits
,”
J. Chem. Phys.
123
,
062201
(
2005
).
10.
G. I.
Csonka
,
J. P.
Perdew
,
A.
Ruzsinszky
,
P. H. T.
Philipsen
,
S.
Lebègue
,
J.
Paier
,
O. A.
Vydrov
, and
J. G.
Ángyán
, “
Assessing the performance of recent density functionals for bulk solids
,”
Phys. Rev. B
79
(
15
),
155107
(
2009
).
11.
F.
Tran
,
J.
Stelzl
, and
P.
Blaha
, “
Rungs 1 to 4 of DFT Jacob’s ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids
,”
J. Chem. Phys.
144
,
204120
(
2016
).
12.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
(
11
),
5029
(
1999
).
13.
P.
Haas
,
F.
Tran
,
P.
Blaha
,
K.
Schwarz
, and
R.
Laskowski
, “
Insight into the performance of GGA functionals for solid-state calculations
,”
Phys. Rev. B
80
(
19
),
195109
(
2009
).
14.
B.
Xiao
,
J.
Sun
,
A.
Ruzsinszky
,
J.
Feng
,
R.
Haunschild
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Testing density functionals for structural phase transitions of solids under pressure: Si, SiO2, and Zr
,”
Phys. Rev. B
88
(
18
),
184103
(
2013
).
15.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
16.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
836
(
2016
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
18.
Y.
Zhang
,
D. A.
Kitchaev
,
J.
Yang
,
T.
Chen
,
S. T.
Dacek
,
R. A.
Sarmiento-Pérez
,
M. A. L.
Marques
,
H.
Peng
,
G.
Ceder
,
J. P.
Perdew
, and
J.
Sun
, “
Efficient first-principles prediction of solid stability: Towards chemical accuracy
,”
npj Comput. Mater.
4
,
9
(
2018
).
19.
D. A.
Kitchaev
,
H.
Peng
,
Y.
Liu
,
J.
Sun
,
J. P.
Perdew
, and
G.
Ceder
, “
Energetics of MnO2 polymorphs in density functional theory
,”
Phys. Rev. B
93
,
045132
(
2016
).
20.
J. H.
Yang
,
D. A.
Kitchaev
, and
G.
Ceder
, “
Rationalizing accurate structure prediction in the meta-GGA SCAN functional
,”
Phys. Rev. B
100
,
035132
(
2019
).
21.
E. B.
Isaacs
and
C.
Wolverton
, “
Performance of the strongly constrained and appropriately normed density functional for solid-state materials
,”
Phys. Rev. Mater.
2
,
063801
(
2018
).
22.
S.
Jana
,
K.
Sharma
, and
P.
Samal
, “
Assessing the performance of the recent meta-GGA density functionals for describing the lattice constants, bulk moduli, and cohesive energies of alkali, alkaline-earth, and transition metals
,”
J. Chem. Phys.
149
,
164703
(
2018
).
23.
Y.
Zhang
,
W.
Zhang
, and
D. J.
Singh
, “
Localization in the SCAN meta-generalized gradient approximation functional leading to broken symmetry ground states for graphene and benzene
,”
Phys. Chem. Chem. Phys.
22
,
19585
19591
(
2020
).
24.
A. P.
Bartók
and
J. R.
Yates
, “
Regularized SCAN functional
,”
J. Chem. Phys.
150
,
161101
(
2019
).
25.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
27.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
28.
P. E.
Blochl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
29.
J. D.
Pack
and
H. J.
Monkhorst
, “
‘Special points for Brillouin-zone integrations’—A reply
,”
Phys. Rev. B
16
,
1748
(
1977
).
30.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
31.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
32.
V.
Wang
,
N.
Xu
,
J. C.
Liu
,
G.
Tang
, and
W. T.
Geng
, “
VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
,”
Comput. Phys. Commun.
267
,
108033
(
2021
).
33.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
(
2015
).
34.
Y.
Wang
,
L. G.
Hector
,
H.
Zhang
,
S. L.
Shang
,
L. Q.
Chen
, and
Z. K.
Liu
, “
Thermodynamics of the Ce γ–α transition: Density-functional study
,”
Phys. Rev. B
78
,
104113
(
2008
).
35.
K.
Lejaeghere
,
V.
Van Speybroeck
,
G.
Van Oost
, and
S.
Cottenier
, “
Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals
,”
Crit. Rev. Solid State Mater. Sci.
39
,
1
(
2014
).
36.
D.
Mejia-Rodriguez
and
S. B.
Trickey
, “
Meta-GGA performance in solids at almost GGA cost
,”
Phys. Rev. B
102
,
121109(R)
(
2020
).
37.
D.
Mejia-Rodriguez
and
S. B.
Trickey
, “
Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals
,”
Phys. Rev. A
96
,
052512
(
2017
).
38.
A.
Kaplan
and
J.
Perdew
, “
Laplacian-level meta-generalized gradient approximation for solid and liquid metals
,”
Phys. Rev. Mater.
6
,
083803
(
2022
).
39.
P.
Janthon
,
S.
Luo
,
S. M.
Kozlov
,
F.
Viñes
,
J.
Limtrakul
,
D. G.
Truhlar
, and
F.
Illas
, “
Bulk properties of transition metals: A challenge for the design of universal density functionals
,”
J. Chem. Theory Comput.
10
(
9
),
3832
3839
(
2014
).
40.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons, Inc.
,
2005
).
41.
Y. S.
Touloukian
,
R. K.
Kirby
,
R. E.
Taylor
, and
P. D.
Desai
,
Thermal Expansion: Metallic Elements and Alloys
,
Thermophysical Properties of Matter Vol. 12
(
Springer
,
1975
).

Supplementary Material

You do not currently have access to this content.