The efficient conversion of solar energy to chemical energy represents a critical bottleneck to the energy transition. Photocatalytic splitting of water to generate solar fuels is a promising solution. Semiconductor quantum dots (QDs) are prime candidates for light-harvesting components of photocatalytic heterostructures, given their size-dependent photophysical properties and band-edge energies. A promising series of heterostructured photocatalysts interface QDs with transition-metal oxides which embed midgap electronic states derived from the stereochemically active electron lone pairs of p-block cations. Here, we examine the thermodynamic driving forces and dynamics of charge separation in Sb2VO5/CdSe QD heterostructures, wherein a high density of Sb 5s2-derived midgap states are prospective acceptors for photogenerated holes. Hard-x-ray valence band photoemission spectroscopy measurements of Sb2VO5/CdSe QD heterostructures were used to deduce thermodynamic driving forces for charge separation. Interfacial charge transfer dynamics in the heterostructures were examined as a function of the mode of interfacial connectivity, contrasting heterostructures with direct interfaces assembled by successive ion layer adsorption and reaction (SILAR) and interfaces comprising molecular bridges assembled by linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate ultrafast (<2 ps) electron and hole transfer in SILAR-derived heterostructures, whereas LAA-derived heterostructures show orders of magnitude differentials in the kinetics of hole (<100 ps) and electron (∼1 ns) transfer. The interface-modulated kinetic differentials in electron and hole transfer rates underpin the more effective charge separation, reduced charge recombination, and greater photocatalytic efficiency observed for the LAA-derived Sb2VO5/CdSe QD heterostructures.

1.
R. J.
Millar
,
J. S.
Fuglestvedt
,
P.
Friedlingstein
,
J.
Rogelj
,
M. J.
Grubb
,
H. D.
Matthews
,
R. B.
Skeie
,
P. M.
Forster
,
D. J.
Frame
, and
M. R.
Allen
, “
Emission budgets and pathways consistent with limiting warming to 1.5 °C
,”
Nat. Geosci.
10
(
10
),
741
747
(
2017
).
2.
N. S.
Lewis
and
D. G.
Nocera
, “
Powering the planet: Chemical challenges in solar energy utilization
,”
Proc. Natl. Acad. Sci. U. S. A.
103
(
43
),
15729
15735
(
2006
).
3.
A.
Majumdar
,
J. M.
Deutch
,
R. S.
Prasher
, and
T. P.
Griffin
, “
A framework for a hydrogen economy
,”
Joule
5
(
8
),
1905
1908
(
2021
).
4.
S.
van Renssen
, “
The hydrogen solution?
,”
Nat. Clim. Change
10
,
799
801
(
2020
).
5.
Q.
Wang
and
K.
Domen
, “
Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies
,”
Chem. Rev.
120
(
2
),
919
985
(
2020
).
6.
R.
Kumar
,
A.
Kumar
, and
A.
Pal
, “
An overview of conventional and non-conventional hydrogen production methods
,”
Mater. Today: Proc.
46
,
5353
5359
(
2021
).
7.
Z.
Wang
,
C.
Li
, and
K.
Domen
, “
Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting
,”
Chem. Soc. Rev.
48
,
2109
2125
(
2019
).
8.
Y.
Tachibana
,
L.
Vayssieres
, and
J. R.
Durrant
, “
Artificial photosynthesis for solar water-splitting
,”
Nat. Photonics
6
,
511
518
(
2012
).
9.
J. V.
Handy
,
W.
Zaheer
,
A. R. M.
Rothfuss
,
C. R.
McGranahan
,
G.
Agbeworvi
,
J. L.
Andrews
,
K. E.
García-Pedraza
,
J. D.
Ponis
,
J. R.
Ayala
,
Y.
Ding
,
D. F.
Watson
, and
S.
Banerjee
, “
Lone but not alone: Precise positioning of lone pairs for the design of photocatalytic architectures
,”
Chem. Mater.
34
(
4
),
1439
1458
(
2022
).
10.
J.
He
and
C.
Janáky
, “
Recent advances in solar-driven carbon dioxide conversion: Expectations versus reality
,”
ACS Energy Lett.
5
(
6
),
1996
2014
(
2020
).
11.
C.
Peng
,
G.
Reid
,
H.
Wang
, and
P.
Hu
, “
Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors
,”
J. Chem. Phys.
147
(
3
),
030901
(
2017
).
12.
J.
Albero
,
Y.
Peng
, and
H.
García
, “
Photocatalytic CO2 reduction to C2+ products
,”
ACS Catal.
10
(
10
),
5734
5749
(
2020
).
13.
W.
Zaheer
,
C. R.
McGranahan
,
J. R.
Ayala
,
K.
Garcia-Pedraza
,
L. J.
Carrillo
,
A. R. M.
Rothfuss
,
U.
Wijethunga
,
G.
Agbeworvi
,
A. R.
Giem
,
J. L.
Andrews
,
J. V.
Handy
,
S.
Perez-Beltran
,
R.
Calderon-Oliver
,
L.
Ma
,
S. N.
Ehrlich
,
C.
Jaye
,
C.
Weiland
,
D. A.
Fischer
,
D. F.
Watson
, and
S.
Banerjee
, “
Photocatalytic hydrogen evolution mechanisms mediated by stereoactive lone pairs of Sb2VO5 in quantum dot heterostructures
,”
Chem Catal.
4
(
1
),
100844
(
2023
).
14.
A. R. M.
Rothfuss
,
J. R.
Ayala
,
J. V.
Handy
,
C. R.
McGranahan
,
K. E.
García-Pedraza
,
S.
Banerjee
, and
D. F.
Watson
, “
Linker-assisted assembly of ligand-bridged CdS/MoS2 heterostructures: Tunable light-harvesting properties and ligand-dependent control of charge-transfer dynamics and photocatalytic hydrogen evolution
,”
ACS Appl. Mater. Interfaces
15
,
39966
39979
(
2023
).
15.
R.
Rossetti
,
S.
Nakahara
, and
L. E.
Brus
, “
Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution
,”
J. Chem. Phys.
79
,
1086
1088
(
1983
).
16.
L. E.
Brus
, “
Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state
,”
J. Chem. Phys.
80
,
4403
4409
(
1984
).
17.
L. E.
Brus
, “
Quantum crystallites and nonlinear optics
,”
Appl. Phys. A
53
,
465
474
(
1991
).
18.
M. S.
Kodaimati
,
K. P.
McClelland
,
C.
He
,
S.
Lian
,
Y.
Jiang
,
Z.
Zhang
, and
E. A.
Weiss
, “
Viewpoint: Challenges in colloidal photocatalysis and some strategies for addressing them
,”
Inorg. Chem.
57
(
7
),
3659
3670
(
2018
).
19.
P. V.
Kamat
,
J. A.
Christians
, and
E. J.
Radich
, “
Quantum dot solar cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency
,”
Langmuir
30
(
20
),
5716
5725
(
2014
).
20.
H. B.
Yang
,
J.
Miao
,
S. F.
Hung
,
F.
Huo
,
H. M.
Chen
, and
B.
Liu
, “
Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting
,”
ACS Nano
8
(
10
),
10403
10413
(
2014
).
21.
H.
Kim
,
A.
Choe
,
S. B.
Ha
,
G. M.
Narejo
,
S. W.
Koo
,
J. S.
Han
,
W.
Chung
,
J. Y.
Kim
,
J.
Yang
, and
S.-I.
In
, “
Quantum dots, passivation layer and cocatalysts for enhanced photoelectrochemical hydrogen production
,”
ChemSusChem
16
,
e202201925
(
2022
).
22.
M.
Seol
,
J. W.
Jang
,
S.
Cho
,
J. S.
Lee
, and
K.
Yong
, “
Highly efficient and stable cadmium chalcogenide quantum dot/ZnO nanowires for photoelectrochemical hydrogen generation
,”
Chem. Mater.
25
(
2
),
184
189
(
2013
).
23.
J.
Cho
,
A.
Sheng
,
N.
Suwandaratne
,
L.
Wangoh
,
J. L.
Andrews
,
P.
Zhang
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
, “
The middle road less taken: Electronic-structure-inspired design of hybrid photocatalytic platforms for solar fuel generation
,”
Acc. Chem. Res.
52
(
3
),
645
655
(
2019
).
24.
J. L.
Andrews
,
J.
Cho
,
L.
Wangoh
,
N.
Suwandaratne
,
A.
Sheng
,
S.
Chauhan
,
K.
Nieto
,
A.
Mohr
,
K. J.
Kadassery
,
M. R.
Popeil
,
P. K.
Thakur
,
M.
Sfeir
,
D. C.
Lacy
,
T. L.
Lee
,
P.
Zhang
,
D. F.
Watson
,
L. F. J.
Piper
, and
S.
Banerjee
, “
Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide
,”
J. Am. Chem. Soc.
140
(
49
),
17163
17174
(
2018
).
25.
R.
Burke
,
K. L.
Bren
, and
T. D.
Krauss
, “
Semiconductor nanocrystal photocatalysis for the production of solar fuels
,”
J. Chem. Phys.
154
(
3
),
030901
(
2021
).
26.
R. S.
Selinsky
,
Q.
Ding
,
M. S.
Faber
,
J. C.
Wright
, and
S.
Jin
, “
Quantum dot nanoscale heterostructures for solar energy conversion
,”
Chem. Soc. Rev.
42
(
7
),
2963
2985
(
2013
).
27.
C. R.
McGranahan
,
G. E.
Wolfe
,
A.
Falca
, and
D. F.
Watson
, “
Excited-state charge transfer and extended charge separation within covalently tethered type-II CdSe/CdTe quantum dot heterostructures: Colloidal and multilayered systems
,”
ACS Appl. Mater. Interfaces
13
(
26
),
30980
30991
(
2021
).
28.
D. F.
Watson
, “
Linker-assisted assembly and interfacial electron-transfer reactivity of quantum dot–substrate architectures
,”
J. Phys. Chem. Lett.
1
(
15
),
2299
2309
(
2010
).
29.
M.
Ciesler
,
D.
West
, and
S.
Zhang
, “
Ligand-assisted charge-transfer mechanism: The case of CdSe/cysteine/MoS2 heterostructures
,”
J. Phys. Chem. Lett.
12
(
51
),
12329
12335
(
2021
).
30.
K.
Cheng
,
H.
Wang
,
J.
Bang
,
D.
West
,
J.
Zhao
, and
S.
Zhang
, “
Carrier dynamics and transfer across the CdS/MoS2 interface upon optical excitation
,”
J. Phys. Chem. Lett.
11
,
6544
6550
(
2020
).
31.
K. E.
Pelcher
,
C. C.
Milleville
,
L.
Wangoh
,
J.
Cho
,
A.
Sheng
,
S.
Chauhan
,
M. Y.
Sfeir
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
, “
Programming interfacial energetic offsets and charge transfer in β-Pb0.33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states
,”
J. Phys. Chem. C
120
(
51
),
28992
29001
(
2016
).
32.
J.
Cho
,
N. S.
Suwandaratne
,
S.
Razek
,
Y. H.
Choi
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
, “
Elucidating the mechanistic origins of photocatalytic hydrogen evolution mediated by MoS2/CdS quantum-dot heterostructures
,”
ACS Appl. Mater. Interfaces
12
,
43728
43740
(
2020
).
33.
C. C.
Milleville
,
K. E.
Pelcher
,
M. Y.
Sfeir
,
S.
Banerjee
, and
D. F.
Watson
, “
Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures
,”
J. Phys. Chem. C
120
,
5221
5232
(
2016
).
34.
J. V.
Handy
,
W.
Zaheer
,
R.
Albers
,
G.
Agbeworvi
,
T. D.
Boyko
,
V.
Bakhmoutov
,
N.
Bhuvanesh
, and
S.
Banerjee
, “
Protecting groups in insertion chemistry: Site-selective positioning of lithium ions in intercalation hosts
,”
Matter
6
(
4
),
1125
1139
(
2023
).
35.
J. T.
Szymanski
, “
A redetermination of the structure of Sb2VO5, stibivanite, a new mineral
,”
Can. Mineral.
18
,
333
337
(
1980
), https://pubs.geoscienceworld.org/canmin/article-abstract/18/3/333/11458/A-redetermination-of-the-structure-of-Sb-2-VO-5.
36.
K. E.
Pelcher
,
C. C.
Milleville
,
L.
Wangoh
,
S.
Chauhan
,
M. R.
Crawley
,
P. M.
Marley
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
, “
Integrating β-Pb0.33V2O5 nanowires with CdSe quantum dots: Toward nanoscale heterostructures with tunable interfacial energetic offsets for charge transfer
,”
Chem. Mater.
27
(
7
),
2468
2479
(
2015
).
37.
J. S.
Nevins
,
K. M.
Coughlin
, and
D. F.
Watson
, “
Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: Influence of molecular linkers on electronic properties and interfacial electron transfer
,”
ACS Appl. Mater. Interfaces
3
(
11
),
4242
4253
(
2011
).
38.
C.
Kalha
,
N. K.
Fernando
,
P.
Bhatt
,
F. O. L.
Johansson
,
A.
Lindblad
,
H.
Rensmo
,
L. Z.
Medina
,
R.
Lindblad
,
S.
Siol
,
L. P. H.
Jeurgens
,
C.
Cancellieri
,
K.
Rossnagel
,
K.
Medjanik
,
G.
Schonhense
,
M.
Simon
,
A. X.
Gray
,
S.
Nemsak
,
P.
Lomker
,
C.
Schlueter
, and
A.
Regoutz
, “
Hard x-ray photoelectron spectroscopy: A snapshot of the state-of-the-art in 2020
,”
J. Phys.: Condens. Matter
33
,
233001
(
2021
).
39.
S.
Siol
,
J.
Mann
,
J.
Newman
,
T.
Miyayama
,
K.
Watanabe
,
P.
Schmutz
,
C.
Cancellieri
, and
L. P. H.
Jeurgens
, “
Concepts for chemical state analysis at constant probing depth by lab-based XPS/HAXPES combining soft and hard X-ray sources
,”
Surf. Interface Anal.
52
,
802
810
(
2020
).
40.
O.
Renault
,
P. M.
Deleuze
,
J.
Courtin
,
T. R.
Bure
,
N.
Gauthier
,
E.
Nolot
,
C.
Robert-Goumet
,
N.
Pauly
,
E.
Martinez
, and
K.
Artyushkova
, “
New directions in the analysis of buried interfaces for device technology by hard X-ray photoemission
,”
Faraday Discuss.
236
,
288
310
(
2022
).
41.
S. A.
Razek
,
M. R.
Popeil
,
L.
Wangoh
,
J.
Rana
,
N.
Suwandaratne
,
J. L.
Andrews
,
D. F.
Watson
,
S.
Banerjee
, and
L. F. J.
Piper
, “
Designing catalysts for water splitting based on electronic structure considerations
,”
Electron. Struct.
2
,
023001
(
2020
).
42.
J. R. I.
Lee
,
R. W.
Meulenberg
,
K. M.
Hanif
,
H.
Mattoussi
,
J. E.
Klepeis
,
L. J.
Terminello
, and
T.
van Buuren
, “
Experimental observation of quantum confinement in the conduction band of CdSe quantum dots
,”
Phys. Rev. Lett.
98
(
14
),
146803
(
2007
).
43.
S.
Banerjee
,
S.
Jia
,
D. I.
Kim
,
R. D.
Robinson
,
J. W.
Kysar
,
J.
Bevk
, and
I. P.
Herman
, “
Raman microprobe analysis of elastic strain and fracture in electrophoretically deposited CdSe nanocrystal films
,”
Nano Lett.
6
(
2
),
175
180
(
2006
).
44.
R.
Baddour-Hadjean
,
J. P.
Pereira-Ramos
et al, “
Raman microspectrometry applied to the study of electrode materials for lithium batteries
,”
AIP Conf. Proc.
110
(
3
),
1278
1319
(
2010
).
45.
R.
Baddour-Hadjean
,
A.
Marzouk
, and
J. P.
Pereira-Ramos
, “
Structural modifications of LixV2O5 in a composite cathode (0 ≤ x < 2) investigated by Raman microspectrometry
,”
J. Raman Spectrosc.
43
,
153
160
(
2012
).
46.
G. A.
Horrocks
,
M. F.
Likely
,
J. M.
Velazquez
, and
S.
Banerjee
, “
Finite size effects on the structural progression induced by lithiation of V2O5: A combined diffraction and Raman spectroscopy study
,”
J. Mater. Chem. A
1
,
15265
15277
(
2013
).
47.
V.
González-Pedro
,
X.
Xu
,
I.
Mora-Seró
, and
J.
Bisquert
, “
Modeling high-efficiency quantum dot sensitized solar cells
,”
ACS Nano
4
,
5783
5790
(
2010
).
48.
T. J.
Miao
and
J.
Tang
, “
Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy
,”
J. Chem. Phys.
152
,
194201
(
2020
).
49.
A. J.
Cowan
and
J. R.
Durrant
, “
Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels
,”
Chem. Soc. Rev.
42
,
2281
(
2013
).
50.
R.
Berera
,
R.
van Grondelle
, and
J. T. M.
Kennis
, “
Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems
,”
Photosynth. Res.
101
,
105
118
(
2009
).
51.
A.
Kafizas
,
X.
Wang
,
S. R.
Pendlebury
,
P.
Barnes
,
M.
Ling
,
C.
Sotelo-Vazquez
,
R.
Quesada-Cabrera
,
C.
Li
,
I. P.
Parkin
, and
J. R.
Durrant
, “
Where do photogenerated holes go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime
,”
J. Phys. Chem. A
120
(
5
),
715
723
(
2016
).
52.
C.
Burda
,
T. C.
Green
,
S.
Link
, and
M. A.
El-Sayed
, “
Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy
,”
J. Phys. Chem. B
103
,
1783
1788
(
1999
).
53.
J. R.
Lakowicz
,
I.
Gryczynski
,
G.
Piszczek
, and
C. J.
Murphy
, “
Emission spectral properties of cadmium sulfide nanoparticles with multiphoton excitation
,”
J. Phys. Chem. B
106
,
5365
5370
(
2002
).
54.
D. J.
Norris
,
A.
Sacra
,
C. B.
Murray
, and
M. G.
Bawendi
, “
Measurement of the size dependent hole spectrum in CdSe quantum dots
,”
Phys. Rev. Lett.
72
(
16
),
2612
(
1994
).
55.
V. I.
Klimov
, “
Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals
,”
J. Phys. Chem. B
104
(
26
),
6112
6123
(
2000
).
56.
V. I.
Klimov
, “
Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals
,”
Annu. Rev. Phys. Chem.
58
,
635
673
(
2007
).
57.
K.
Tvrdy
,
P. A.
Frantsuzov
, and
P. V.
Kamat
, “
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
29
34
(
2011
).
58.
D. G.
Sellers
,
A. A.
Button
,
J. N.
Nasca
,
G. E.
Wolfe
,
S.
Chauhan
, and
D. F.
Watson
, “
Excited-state charge transfer within covalently linked quantum dot heterostructures
,”
J. Phys. Chem. C
119
,
27737
27748
(
2015
).
59.
J.
Huang
,
D.
Stockwell
,
Z.
Huang
,
D. L.
Mohler
, and
T.
Lian
, “
Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes
,”
J. Am. Chem. Soc.
130
(
17
),
5632
5633
(
2008
).
60.
J.
Huang
,
Z.
Huang
,
S.
Jin
, and
T.
Lian
, “
Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine
,”
J. Phys. Chem. C
112
(
49
),
19734
19738
(
2008
).
61.
K. J.
Schnitzenbaumer
,
T.
Labrador
, and
G.
Dukovic
, “
Impact of chalcogenide ligands on excited state dynamics in CdSe quantum dots
,”
J. Phys. Chem. C
119
(
23
),
13314
13324
(
2015
).
62.
S.
Chauhan
,
A.
Sheng
,
J.
Cho
,
S. A.
Razek
,
N.
Suwandaratne
,
M. Y.
Sfeir
,
L. F. J.
Piper
,
S.
Banerjee
, and
D. F.
Watson
, “
Type-II heterostructures of α-V2O5 nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution
,”
J. Chem. Phys.
151
(
22
),
224702
(
2019
).
63.
J.
Bang
,
S.
Meng
,
Y. Y.
Sun
,
D.
West
,
Z.
Wang
,
F.
Gao
, and
S. B.
Zhang
, “
Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
3
),
908
911
(
2013
).
64.
S.
Meng
and
E.
Kaxiras
, “
Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations
,”
J. Chem. Phys.
129
,
054110
(
2008
).
65.
M.
Ciesler
,
H.
Wang
,
S.
Zhang
, and
D.
West
, “
Ultrafast charge transfer enhancement in CdS–MoS2 via a linker molecule
,”
J. Phys. Chem. C
127
(
39
),
19668
19674
(
2023
).
66.
M.
Waqas
,
J.
Younis
,
M.
Awais
,
N.
Nazar
,
S.
Hussain
,
S.
Murtaza
,
N.
Yasmin
,
M. N.
Ashiq
,
M.
Mirza
, and
M.
Safdar
, “
CrS2-modulated enhanced catalytic properties of CdS/MoS2 heterostructures toward photodegradation and electrochemical OER kinetics
,”
Energy Fuels
36
(
15
),
8391
8401
(
2022
).
67.
P. K.
Santra
and
P. V.
Kamat
, “
Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%
,”
J. Am. Chem. Soc.
134
(
5
),
2508
2511
(
2012
).

Supplementary Material

You do not currently have access to this content.