The singlet fission process involves the conversion of one singlet excited state into two triplet states, which has significant potential for enhancing the energy utilization efficiency of solar cells. Carotenoid, a typical π conjugated chromophore, exhibits specific aggregate morphologies known to display singlet fission behavior. In this study, we investigate the singlet fission process in lycopene H-aggregates using femtosecond stimulated Raman spectroscopy aided by quantum chemical calculation. The experimental results reveal two reaction pathways that effectively relax the S2 (11Bu+) state populations in lycopene H-aggregates: a monomer-like singlet excited state relaxation pathway through S2 (11Bu+) → 11Bu → S1 (21Ag) and a dominant sequential singlet fission reaction pathway involving the S2 (11Bu+) state, followed by S* state, a triplet pair state [1(TT)], eventually leading to a long lifetime triplet state T1. Importantly, the presence of both anionic and cationic fingerprint Raman peaks in the S* state is indicative of a substantial charge-transfer character.

1.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
2004
).
2.
M. C.
Hanna
and
A. J.
Nozik
,
J. Appl. Phys.
100
,
510
(
2006
).
3.
A.
Rao
and
R. H.
Friend
,
Nat. Rev. Mater.
2
,
17063
(
2017
).
4.
D. N.
Congreve
et al,
Science
340
,
334
(
2013
).
5.
M.
Tabachnyk
et al,
Appl. Phys. Lett.
103
,
153302
(
2013
).
7.
N. R.
Monahan
et al,
Nat. Chem.
9
,
341
(
2017
).
8.
R. D.
Pensack
et al,
J. Phys. Chem. Lett.
7
,
2370
(
2016
).
9.
10.
M. B.
Smith
and
J.
Michl
,
Chem. Rev.
110
,
6891
(
2010
).
11.
I.
Paci
et al,
J. Am. Chem. Soc.
128
,
16546
(
2006
).
12.
S.
Singh
et al,
J. Chem. Phys.
42
,
330
(
1965
).
13.
C. E.
Swenberg
and
W. T.
Stacy
,
Chem. Phys. Lett.
2
,
327
(
1968
).
14.
R. E.
Merrifield
,
P.
Avakian
, and
R. P.
Groff
,
Chem. Phys. Lett.
3
,
155
(
1969
).
15.
R. H.
Austin
et al,
J. Chem. Phys.
90
,
6642
(
1989
).
16.
C.
Wang
and
M. J.
Tauber
,
J. Am. Chem. Soc.
132
,
13988
(
2010
).
17.
J. J.
Burdett
et al,
J. Chem. Phys.
133
,
144506
(
2010
).
18.
J.
Lee
,
P.
Jadhav
, and
M. A.
Baldo
,
Appl. Phys. Lett.
95
,
033301
(
2009
).
19.
S. T.
Roberts
et al,
J. Am. Chem. Soc.
134
,
6388
(
2012
).
20.
21.
A.
Kundu
and
J.
Dasgupta
,
J. Phys. Chem. Lett.
12
,
1468
(
2021
).
22.
J. C.
Johnson
,
A. J.
Nozik
, and
J.
Michl
,
Acc. Chem. Res.
46
,
1290
(
2013
).
23.
E. A.
Margulies
et al,
Nat. Chem.
8
,
1120
(
2016
).
24.
S.
Santra
,
J.
Ray
, and
D.
Ghosh
,
J. Phys. Chem. Lett.
13
,
6800
(
2022
).
25.
W.
Barford
,
J. Phys. Chem. Lett.
14
,
9842
(
2023
).
26.
C.
Schnedermann
et al,
Nat. Commun.
10
,
4207
(
2019
).
27.
M. J.
Llansola-Portoles
et al,
Phys. Chem. Chem. Phys.
20
,
8640
(
2018
).
28.
A. J.
Musser
et al,
J. Am. Chem. Soc.
137
,
5130
(
2015
).
29.
S.
Hart
,
W. R.
Silva
, and
R. R.
Frontiera
,
Chem. Sci.
9
,
1242
(
2018
).
30.
K.
Bera
,
C. J.
Douglas
, and
R. R.
Frontiera
,
Chem. Sci.
12
,
13825
(
2021
).
31.
R.
Pu
et al,
J. Phys. Chem. Lett.
14
,
809
(
2023
).
32.
J.
Wei
et al,
J. Phys. Chem. Lett.
12
,
4466
(
2021
).
33.
M.
Chen
et al,
J. Chem. Phys.
153
,
094302
(
2020
).
34.
N.
Monahan
and
X. Y.
Zhu
,
Annu. Rev. Phys. Chem.
66
,
601
(
2015
).
35.
J.
Hempel
et al,
Journal of Photochemistry and Photobiology A: Chemistry
317
,
161
(
2016
).
36.
J.
Dong
et al,
Chem. Phys. Lett.
701
,
52
(
2018
).
37.
R. D.
Pensack
et al,
J. Am. Chem. Soc.
137
,
6790
(
2015
).
38.
M.
Frisch
et al, Gaussian 09 (Revision D.01) (
2009
).
39.
L.
Lu
et al,
Spectrochim. Acta, Part A
169
,
116
(
2016
).
40.
S.
Köhn
et al, “
Aggregation and Interface Behaviour of Carotenoids,
” edited by S. L.-J. G. Britton, H. Pfander (Birkhäuser, Basel, Boston, Berlin, 2008), p. 70.
41.
H.
Nagae
et al,
J. Phys. Chem. A
104
,
4155
(
2000
).
42.
T.
Sahima
et al,
J. Phys. Chem. B
104
,
5011
(
2000
).
43.
T.
Polívka
and
V.
Sundström
,
Chem. Rev.
104
,
2021
(
2004
).
45.
J.
Yu
et al,
J. Am. Chem. Soc.
139
,
15984
(
2017
).
46.
F. S.
Rondonuwu
et al,
Chem. Phys. Lett.
376
,
292
(
2003
).
47.
E.
Papagiannakis
et al,
Proc. Natl. Acad. Sci. U. S. A.
99
,
6017
(
2002
).
48.
M. B.
Smith
and
J.
Michl
,
Annu. Rev. Phys. Chem.
64
,
361
(
2013
).
49.
J. Y.
Kim
,
Y.
Furukawa
, and
M.
Tasumi
,
Chem. Phys. Lett.
276
,
418
(
1997
).
51.
J. S.
Vrettos
et al,
J. Phys. Chem. B
103
,
6403
(
1999
).
52.
A. S.
Jeevarajan
et al,
Chem. Phys. Lett.
259
,
515
(
1996
).
53.
T.
Dudev
et al,
J. Phys. Chem.
95
,
4999
(
1991
).
54.
J. E.
Bennett
et al,
J. Raman Spectrosc.
16
,
174
(
1985
).
55.
R.
González-Luque
et al,
Proc. Natl. Acad. Sci. U. S. A.
97
,
9379
(
2000
).
57.
S.
Shim
and
R. A.
Mathies
,
J. Phys. Chem. B
112
,
4826
(
2008
).

Supplementary Material

You do not currently have access to this content.