Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.

1.
A. M.
Evans
,
M. J.
Strauss
,
A. R.
Corcos
,
Z.
Hirani
,
W.
Ji
,
L. S.
Hamachi
,
X.
Aguilar-Enriquez
,
A. D.
Chavez
,
B. J.
Smith
, and
W. R.
Dichtel
, “
Two-dimensional polymers and polymerizations
,”
Chem. Rev.
122
,
442
564
(
2022
).
2.
K. T.
Tan
,
S.
Ghosh
,
Z.
Wang
,
F.
Wen
,
D.
Rodríguez-San-Miguel
,
J.
Feng
,
N.
Huang
,
W.
Wang
,
F.
Zamora
,
X.
Feng
et al, “
Covalent organic frameworks
,”
Nat. Rev. Methods Primers
3
,
1
(
2023
).
3.
J. S.
De Vos
,
S.
Borgmans
,
P.
Van Der Voort
,
S. M. J.
Rogge
, and
V.
Van Speybroeck
, “
ReDD-COFFEE: A ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings
,”
J. Mater. Chem. A
11
,
7468
7487
(
2023
).
4.
M. S.
Lohse
and
T.
Bein
, “
Covalent organic frameworks: Structures, synthesis, and applications
,”
Adv. Funct. Mater.
28
,
1705553
(
2018
).
5.
H.
Li
,
A.
Dilipkumar
,
S.
Abubakar
, and
D.
Zhao
, “
Covalent organic frameworks for CO2 capture: From laboratory curiosity to industry implementation
,”
Chem. Soc. Rev.
52
,
6294
6329
(
2023
).
6.
D. D.
Medina
,
T.
Sick
, and
T.
Bein
, “
Photoactive and conducting covalent organic frameworks
,”
Adv. Energy Mater.
7
,
1700387
(
2017
).
7.
R.
Kumar
,
S.
Naz Ansari
,
R.
Deka
,
P.
Kumar
,
M.
Saraf
, and
S. M.
Mobin
, “
Progress and perspectives on covalent-organic frameworks (COFs) and composites for various energy applications
,”
Chem. Eur. J.
27
,
13669
13698
(
2021
).
8.
D.
Inácio
,
A. L.
Pinto
,
A. B.
Paninho
,
L. C.
Branco
,
S. K. S.
Freitas
, and
H.
Cruz
, “
Application of covalent organic frameworks (COFs) as dyes and additives for dye-sensitized solar cells (DSSCs)
,”
Nanomaterials
13
,
1204
(
2023
).
9.
Y.
Yang
,
A. P.
Sandra
,
A.
Idström
,
C.
Schäfer
,
M.
Andersson
,
L.
Evenäs
, and
K.
Börjesson
, “
Electroactive covalent organic framework enabling photostimulus-responsive devices
,”
J. Am. Chem. Soc.
144
,
16093
16100
(
2022
).
10.
M.
Martínez-Fernández
,
E.
Martínez-Periñán
,
S.
Royuela
,
J. I.
Martínez
,
F.
Zamora
,
E.
Lorenzo
, and
J.
Segura
, “
Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction
,”
Appl. Mater. Today
26
,
101384
(
2022
).
11.
S.
Liu
,
M.
Wang
,
Y.
He
,
Q.
Cheng
,
T.
Qian
, and
C.
Yan
, “
Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities
,”
Coord. Chem. Rev.
475
,
214882
(
2023
).
12.
S.
Altinişik
,
G.
Yanalak
,
İ.
Hatay Patır
, and
S.
Koyuncu
, “
Viologen-based covalent organic frameworks toward metal-free highly efficient photocatalytic hydrogen evolution
,”
ACS Appl. Mater. Interfaces
15
,
18836
18844
(
2023
).
13.
S.
Qi
,
R.
Guo
,
Z.
Bi
,
Z.
Zhang
,
C.
Li
, and
W.
Pan
, “
Recent progress of covalent organic frameworks-based materials in photocatalytic applications: A review
,”
Small
19
,
2303632
(
2023
).
14.
M.
Wang
,
G.
Liang
,
M.
Wang
,
M.
Hu
,
L.
Zhu
,
Z.
Li
,
Z.
Zhang
,
L.
He
, and
M.
Du
, “
Electroactive and photoactive porphyrin-based covalent-organic framework for the construction of a bifunctional self-powered sensing platform toward real time analysis of nitride oxide from cancer cells
,”
Chem. Eng. J.
448
,
137779
(
2022
).
15.
R.
Zhao
,
T.
Wang
,
J.
Li
,
Y.
Shi
,
M.
Hou
,
Y.
Yang
,
Z.
Zhang
, and
S.
Lei
, “
Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities
,”
Nano Res.
16
,
8570
8595
(
2023
).
16.
Y.
Fan
,
M.
Chen
,
N.
Xu
,
K.
Wang
,
Q.
Gao
,
J.
Liang
, and
Y.
Liu
, “
Recent progress on covalent organic framework materials as CO2 reduction electrocatalysts
,”
Front. Chem.
10
,
942492
(
2022
).
17.
H.
Li
,
L.
Wang
, and
G.
Yu
, “
Covalent organic frameworks: Design, synthesis, and performance for photocatalytic applications
,”
Nano Today
40
,
101247
(
2021
).
18.
Z.
Chen
,
J.
Wang
,
M.
Hao
,
Y.
Xie
,
M.
Liu
,
H.
Yang
,
G. I. N.
Waterhouse
,
X.
Wang
, and
S.
Ma
, “
Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance
,”
Nat. Commun.
14
,
1106
(
2023
).
19.
Y.-J.
Li
,
W.-R.
Cui
,
Q.-Q.
Jiang
,
Q.
Wu
,
R.-P.
Liang
,
Q.-X.
Luo
, and
J.-D.
Qiu
, “
A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence
,”
Nat. Commun.
12
,
4735
(
2021
).
20.
L.
Zhang
,
X.
Zhang
,
D.
Han
,
L.
Zhai
, and
L.
Mi
, “
Recent progress in design principles of covalent organic frameworks for rechargeable metal-ion batteries
,”
Small Methods
7
,
2300687
(
2023
).
21.
J.
Yang
,
F.
Kang
,
X.
Wang
, and
Q.
Zhang
, “
Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: A review
,”
Mater. Horiz.
9
,
121
146
(
2022
).
22.
X.
Li
,
Q.
Gao
,
J.
Wang
,
Y.
Chen
,
Z.-H.
Chen
,
H.-S.
Xu
,
W.
Tang
,
K.
Leng
,
G.-H.
Ning
,
J.
Wu
et al, “
Tuneable near white-emissive two-dimensional covalent organic frameworks
,”
Nat. Commun.
9
,
2335
(
2018
).
23.
M.
Deshaye
,
Z. A.
Pollard
,
A.
Banducci
,
A.
Goodey
,
C.
Prommin
,
N.
Kanlayakan
,
N.
Kungwan
, and
T.
Kowalczyk
, “
Accessible and efficient modeling of chromophores within time-independent excited-state density functional tight-binding: Concepts and applications
,” in
Physical Chemistry Research at Undergraduate Institutions: Innovative and Impactful Approaches
(
American Chemical Society
,
2022
), Vol.
2
, pp.
125
144
.
24.
S. P. S.
Fernandes
,
L.
Frey
,
K. M.
Cid-Seara
,
O.
Oliveira
,
N.
Guldris
,
E.
Carbó-Argibay
,
C.
Rodríguez-Abreu
,
Y. V.
Kolen'ko
,
A. M. S.
Silva
,
D. D.
Medina
, and
L. M.
Salonen
, “
A post-synthetic modification strategy for the synthesis of pyrene-fused azaacene covalent organic frameworks
,”
Microporous Mesoporous Mater.
343
,
112162
(
2022
).
25.
C.
Wang
,
Z.
Zhang
,
Y.
Zhu
,
C.
Yang
,
J.
Wu
, and
W.
Hu
, “
2D covalent organic frameworks: From synthetic strategies to advanced optical-electrical-magnetic functionalities
,”
Adv. Mater.
34
,
2102290
(
2022
).
26.
R. K.
Sharma
,
P.
Yadav
,
M.
Yadav
,
R.
Gupta
,
P.
Rana
,
A.
Srivastava
R.
Zbor̆il
,
R. S.
Varma
,
M.
Antonetti
, and
M. B.
Gawande
, “
Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications
,”
Mater. Horiz.
7
,
411
454
(
2020
).
27.
X.
Li
,
S.
Cai
,
B.
Sun
,
C.
Yang
,
J.
Zhang
, and
Y.
Liu
, “
Chemically robust covalent organic frameworks: Progress and perspective
,”
Matter
3
,
1507
1540
(
2020
).
28.
L.
Frey
,
O.
Oliveira
,
A.
Sharma
,
R.
Guntermann
,
S. P. S.
Fernandes
,
K. M.
Cid-Seara
,
H.
Abbay
,
H.
Thornes
,
J.
Rocha
,
M.
Döblinger
et al, “
Building blocks and COFs formed in concert—Three-component synthesis of pyrene-fused azaacene covalent organic framework in the bulk and as films
,”
Angew. Chem., Int. Ed.
62
,
e202302872
(
2023
).
29.
Y.
Lan
,
M.
Tong
,
Q.
Yang
, and
C.
Zhong
, “
Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide
,”
CrystEngComm
19
,
4920
4926
(
2017
).
30.
O. F.
Altundal
,
C.
Altintas
, and
S.
Keskin
, “
Can COFs replace MOFs in flue gas separation? High-throughput computational screening of COFs for CO2/N2 separation
,”
J. Mater. Chem. A
8
,
14609
14623
(
2020
).
31.
M.
Feng
,
M.
Cheng
,
J.
Deng
,
X.
Ji
,
L.
Zhou
,
Y.
Dang
,
K.
Bi
,
Z.
Dai
, and
Y.
Dai
, “
High-throughput computational screening of covalent–organic framework membranes for helium purification
,”
Results Eng.
15
,
100538
(
2022
).
32.
S.
Aydin
,
C.
Altintas
, and
S.
Keskin
, “
High-throughput screening of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification
,”
ACS Appl. Mater. Interfaces
14
,
21738
21749
(
2022
).
33.
B.
Mourino
,
K. M.
Jablonka
,
A.
Ortega-Guerrero
, and
B.
Smit
, “
In search of covalent organic framework photocatalysts: A DFT-based screening approach
,”
Adv. Funct. Mater.
33
,
2301594
(
2023
).
34.
S.-H.
Wen
,
A.
Li
,
J.
Song
,
W.-Q.
Deng
,
K.-L.
Han
, and
W. A.
Goddard
III
, “
First-principles investigation of anistropic hole mobilities in organic semiconductors
,”
J. Phys. Chem. B
113
,
8813
8819
(
2009
).
35.
S.
Giannini
and
J.
Blumberger
, “
Charge transport in organic semiconductors: The perspective from nonadiabatic molecular dynamics
,”
Acc. Chem. Res.
55
,
819
830
(
2022
).
36.
T.
Chu
and
Y.
Liu
, “
A theoretical approach for simulations of anisotropic charge carrier mobility in organic single crystal semiconductors
,”
Org. Electron.
53
,
165
184
(
2018
).
37.
H.
Kitoh-Nishioka
,
K.
Welke
,
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
, “
Multiscale simulations on charge transport in covalent organic frameworks including dynamics of transfer integrals from the FMO-DFTB/LCMO approach
,”
J. Phys. Chem. C
121
,
17712
17726
(
2017
).
38.
E.
Jin
,
K.
Geng
,
S.
Fu
,
S.
Yang
,
N.
Kanlayakan
,
M. A.
Addicoat
,
N.
Kungwan
,
J.
Geurs
,
H.
Xu
,
M.
Bonn
et al, “
Exceptional electron conduction in two-dimensional covalent organic frameworks
,”
Chem
7
,
3309
3324
(
2021
).
39.
S.
Ghosh
,
Y.
Tsutsui
,
T.
Kawaguchi
,
W.
Matsuda
,
S.
Nagano
,
K.
Suzuki
,
H.
Kaji
, and
S.
Seki
, “
Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks
,”
Chem. Mater.
34
,
736
745
(
2022
).
40.
S.
Patwardhan
,
A. A.
Kocherzhenko
,
F. C.
Grozema
, and
L. D. A.
Siebbeles
, “
Delocalization and mobility of charge carriers in covalent organic frameworks
,”
J. Phys. Chem. C
115
,
11768
11772
(
2011
).
41.
R. J.
Cave
and
M. D.
Newton
, “
Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements
,”
Chem. Phys. Lett.
249
,
15
19
(
1996
).
42.
J.
Zheng
,
Y. K.
Kang
et al, “
Generalized Mulliken–Hush analysis of electronic coupling interactions in compressed π-stacked porphyrin–bridge–quinone systems
,”
J. Am. Chem. Soc.
127
,
11303
11310
(
2005
).
43.
J. E.
Subotnik
,
S.
Yeganeh
,
R. J.
Cave
, and
M. A.
Ratner
, “
Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization
,”
J. Chem. Phys.
129
,
244101
(
2008
).
44.
X.
Guo
,
Z.
Qu
, and
J.
Gao
, “
The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study
,”
Chem. Phys. Lett.
691
,
91
97
(
2018
).
45.
Q.
Wu
and
T.
Van Voorhis
, “
Extracting electron transfer coupling elements from constrained density functional theory
,”
J. Chem. Phys.
125
,
164105
(
2006
).
46.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
, “
Constrained density functional theory
,”
Chem. Rev.
112
,
321
370
(
2012
).
47.
A. A.
Voityuk
, “
Electronic couplings for photoinduced electron transfer and excitation energy transfer computed using excited states of noninteracting molecules
,”
J. Phys. Chem. A
121
,
5414
5419
(
2017
).
48.
J. T.
Kohn
,
N.
Gildemeister
,
S.
Grimme
,
D.
Fazzi
, and
A.
Hansen
, “
Efficient calculation of electronic coupling integrals with the dimer projection method via a density matrix tight-binding potential
,”
J. Chem. Phys.
159
,
144106
(
2023
).
49.
V.
Laszlo
and
T.
Kowalczyk
, “
Acene-linked covalent organic frameworks as candidate materials for singlet fission
,”
J. Mater. Chem. A
4
,
10500
10507
(
2016
).
50.
M.
Dogru
,
M.
Handloser
,
F.
Auras
,
T.
Kunz
,
D.
Medina
,
A.
Hartschuh
,
P.
Knochel
, and
T.
Bein
, “
A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene
,”
Angew. Chem., Int. Ed.
52
,
2920
2924
(
2013
).
51.
J.
Frenzel
,
A. F.
Oliveira
,
N.
Jardillier
,
T.
Heine
, and
G.
Seifert
, “
Semi-relativistic, self-consistent charge Slater-Koster tables for density-functional based tight-binding (DFTB) for materials science simulations
” (TU Dresden,
2004–2009
).
52.
B.
Lukose
,
A.
Kuc
,
J.
Frenzel
, and
T.
Heine
, “
On the reticular construction concept of covalent organic frameworks
,”
Beilstein J. Nanotechnol.
1
,
60
70
(
2010
).
53.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
et al, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
55.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
56.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
et al, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
57.
Y.
Wakayama
,
R.
Hayakawa
,
T.
Chikyow
,
S.
Machida
,
T.
Nakayama
,
S.
Egger
,
D. G.
de Oteyza
,
H.
Dosch
,
K.
Kobayashi
, and
K.
Kobayashi
, “
Self-assembled molecular nanowires of 6,13-bis(methylthio)pentacene: Growth, electrical properties, and applications
,”
Nano Lett.
8
,
3273
3277
(
2008
).
58.
M.
Wang
,
M.
Ballabio
,
M.
Wang
,
H.-H.
Lin
,
B. P.
Biswal
,
X.
Han
,
S.
Paasch
,
E.
Brunner
,
P.
Liu
,
M.
Chen
et al, “
Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks
,”
J. Am. Chem. Soc.
141
,
16810
16816
(
2019
).
59.
M. B.
Smith
and
J.
Michl
, “
Singlet fission
,”
Chem. Rev.
110
,
6891
6936
(
2010
).
60.
E. C.
Greyson
,
B. R.
Stepp
,
X.
Chen
,
A. F.
Schwerin
,
I.
Paci
,
M. B.
Smith
,
A.
Akdag
,
J. C.
Johnson
,
A. J.
Nozik
,
J.
Michl
, and
M. A.
Ratner
, “
Singlet exciton fission for solar cell applications: Energy aspects of interchromophore coupling
,”
J. Phys. Chem. B
114
,
14223
14232
(
2010
).
61.
T.
Saegusa
,
H.
Sakai
,
H.
Nagashima
,
Y.
Kobori
,
N. V.
Tkachenko
, and
T.
Hasobe
, “
Controlled orientations of neighboring tetracene units by mixed self-assembled monolayers on gold nanoclusters for high-yield and long-lived triplet excited states through singlet fission
,”
J. Am. Chem. Soc.
141
,
14720
14727
(
2019
).
62.
X.
Wu
,
X.
Han
,
Y.
Liu
,
Y.
Liu
, and
Y.
Cui
, “
Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning
,”
J. Am. Chem. Soc.
140
,
16124
16133
(
2018
).
63.
Z.
Wang
,
Y.
Zhang
,
T.
Wang
,
E.
Lin
,
T.
Wang
,
Y.
Chen
,
P.
Cheng
, and
Z.
Zhang
, “
Modulating the interlayer stacking of covalent organic frameworks for efficient acetylene separation
,”
Small
19
,
2303684
(
2023
).
64.
M.
Liu
,
Y.
Fu
,
S.
Bi
,
S.
Yang
,
X.
Yang
,
X.
Li
,
G. Z.
Chen
,
J.
He
,
Q.
Xu
, and
G.
Zeng
, “
Dimensionally-controlled interlayer spaces of covalent organic frameworks for the oxygen evolution reaction
,”
Chem. Eng. J.
479
,
147682
(
2024
).
65.
M.
Calik
,
F.
Auras
,
L. M.
Salonen
,
K.
Bader
,
I.
Grill
,
M.
Handloser
,
D. D.
Medina
,
M.
Dogru
,
F.
Löbermann
,
D.
Trauner
et al, “
Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction
,”
J. Am. Chem. Soc.
136
,
17802
17807
(
2014
).
66.
D. H.
Streater
,
E. R.
Kennehan
,
D.
Wang
,
C.
Fiankor
,
L.
Chen
,
C.
Yang
.
B.
Li
,
D.
Liu
,
F.
Ibrahim
,
I.
Hermans
et al, “
Control over charge separation by imine structural isomerization in covalent organic frameworks with implications on CO2 photoreduction
,”
J. Am. Chem. Soc.
146
,
4489
4499
(
2024
).
67.
S.
Fukuzumi
,
A.
Itoh
,
T.
Suenobu
, and
K.
Ohkubo
, “
Formation of the long-lived charge-separated state of the 9-mesityl-10-methylacridinium cation incorporated into mesoporous aluminosilicate at high temperatures
,”
J. Phys. Chem. C
118
,
24188
24196
(
2014
).
68.
N.
Garcia
and
T.
Kowalczyk
, “
Extension of intramolecular charge-transfer state lifetime by encapsulation in porous frameworks
,”
J. Phys. Chem. C
121
,
20673
20679
(
2017
).
69.
H.
Kim
,
T.
Goodson
III
, and
P. M.
Zimmerman
, “
Density functional physicality in electronic coupling estimation: Benchmarks and error analysis
,”
J. Phys. Chem. Lett.
8
,
3242
3248
(
2017
).
70.
L.
Dontot
,
N.
Suaud
,
M.
Rapacioli
, and
F.
Spiegelman
, “
An extended DFTB-CI model for charge-transfer excited states in cationic molecular clusters: Model studies versus ab initio calculations in small PAH clusters
,”
Phys. Chem. Chem. Phys.
18
,
3545
3557
(
2016
).
71.
A.
Croy
,
E.
Unsal
,
R.
Biele
, and
A.
Pecchia
, “
DFTBephy: A DFTB-based approach for electron-phonon coupling calculations
,”
J. Comput. Electron.
22
,
1231
1239
(
2023
).

Supplementary Material

You do not currently have access to this content.