Potential applications of previously synthesized pillared graphene oxide frameworks with phenyldiboronic acid linkers in the field of the adsorption and separation of polar protic and aprotic liquid solvents have been systematically explored using grand canonical Monte Carlo simulations. Particular attention was initially paid to the adsorption of pure liquid water, methanol, and dimethyl sulfoxide. The results obtained a significant increase in the isosteric heat of adsorption at low uptake in the case of dimethyl sulfoxide, which is about 17.9 and 26.8 kJ/mol higher than the values corresponding to methanol and water adsorption. These findings indicated that from a thermodynamic point of view, these pillared graphene oxide frameworks could be used in the separation of dimethyl sulfoxide–water liquid mixtures. Systematic grand canonical Monte Carlo simulations were then subsequently performed for dimethyl sulfoxide–water mixtures, with a low dimethyl sulfoxide concentration. The calculated values of the separation selectivity indicate that these materials could have potential applications in the separation of these mixed liquid solvents. Molecular dynamics simulations performed for a representative adsorbed mixture have revealed a substantial slowing down of the dynamics under confinement, particularly in the case of the hydrogen bonds formed between water and dimethyl sulfoxide.

1.
N.
Fujiwara
and
H.
Yamamoto
, “
Evaluation of adsorption of organic solvents to modified hydrophobic silica adsorbents based on Hansen solubility parameter
,”
Sep. Purif. Technol.
210
,
907
912
(
2019
).
2.
F.-X.
Coudert
, “
Water adsorption in soft and heterogeneous nanopores
,”
Acc. Chem. Res.
53
,
1342
1350
(
2020
).
3.
J. S. A.
Cortez
,
B. I.
Kharisov
,
T. E. S.
Quezada
, and
T. C. H.
García
, “
Micro- and nanoporous materials capable of absorbing solvents and oils reversibly: The state of the art
,”
Pet. Sci.
14
,
84
104
(
2017
).
4.
K.
Zhang
,
L.
Zhang
, and
J.
Jiang
, “
Adsorption of C1–C4 alcohols in zeolitic imidazolate framework-8: Effects of force fields, atomic charges, and framework flexibility
,”
J. Phys. Chem. C
117
,
25628
25635
(
2013
).
5.
K.
Zhang
,
A.
Nalaparaju
,
Y.
Chen
, and
J.
Jiang
, “
Biofuel purification in zeolitic imidazolate frameworks: The significant role of functional groups
,”
Phys. Chem. Chem. Phys.
16
,
9643
9655
(
2014
).
6.
Y. F.
Chen
,
J. Y.
Lee
,
R.
Babarao
,
J.
Li
, and
J. W.
Jiang
, “
A highly hydrophobic metal–organic framework Zn(BDC)(TED)0.5 for adsorption and separation of CH3OH/H2O and CO2/CH4: An integrated experimental and simulation study
,”
J. Phys. Chem. C
114
,
6602
6609
(
2010
).
7.
I.
Skarmoutsos
,
M.
Eddaoudi
, and
G.
Maurin
, “
Highly efficient rare-earth-based metal–organic frameworks for water adsorption: A molecular modeling approach
,”
J. Phys. Chem. C
123
,
26989
26999
(
2019
).
8.
I.
Skarmoutsos
,
E. N.
Koukaras
,
G. E.
Froudakis
,
G.
Maurin
, and
E.
Klontzas
, “
Confinement effects on the properties of polar hydrogen-bonded fluids: A showcase on methanol adsorbed in three-dimensional pillared graphene and carbon nanotube networks
,”
J. Phys. Chem. C
124
,
22959
22971
(
2020
).
9.
W.
Wei
,
K.
Zhang
,
Z.
Qiao
, and
J.
Jiang
, “
Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study
,”
Chem. Eng. J.
356
,
737
745
(
2019
).
10.
A.
Nalaparaju
and
J.
Jiang
, “
Recovery of dimethyl sulfoxide from aqueous solutions by highly selective adsorption in hydrophobic metal–organic frameworks
,”
Langmuir
28
,
15305
15312
(
2012
).
11.
A.
Nalaparaju
,
X. S.
Zhao
, and
J. W.
Jiang
, “
Molecular understanding for the adsorption of water and alcohols in hydrophilic and hydrophobic zeolitic metal–organic frameworks
,”
J. Phys. Chem. C
114
,
11542
11550
(
2010
).
12.
H.
Furukawa
,
F.
Gándara
,
Y.-B.
Zhang
,
J.
Jiang
,
W. L.
Queen
,
M. R.
Hudson
, and
O. M.
Yaghi
, “
Water adsorption in porous metal–organic frameworks and related materials
,”
J. Am. Chem. Soc.
136
,
4369
4381
(
2014
).
13.
B.
Lian
,
S.
De Luca
,
Y.
You
,
S.
Alwarappan
,
M.
Yoshimura
,
V.
Sahajwalla
,
S. C.
Smith
,
G.
Leslie
, and
R. K.
Joshi
, “
Extraordinary water adsorption characteristics of graphene oxide
,”
Chem. Sci.
9
,
5106
5111
(
2018
).
14.
U.
Zulfiqar
,
N.
Kostoglou
,
A. G.
Thomas
,
C.
Rebholz
,
A.
Matthews
, and
D. J.
Lewis
, “
Flexible nanoporous activated carbon for adsorption of organics from industrial effluents
,”
Nanoscale
13
,
15311
15323
(
2021
).
15.
P. V. B.
Leal
,
D. H.
Pereira
,
R. M.
Papini
, and
Z. M.
Magriotis
, “
Effect of dimethyl sulfoxide intercalation into kaolinite on etheramine adsorption: Experimental and theoretical investigation
,”
J. Environ. Chem. Eng.
9
,
105503
(
2021
).
16.
T. R. C.
Van Assche
,
T.
Remy
,
G.
Desmet
,
G. V.
Baron
, and
J. F. M.
Denayer
, “
Adsorptive separation of liquid water/acetonitrile mixtures
,”
Sep. Purif. Technol.
82
,
76
86
(
2011
).
17.
C.
González-Galán
,
A.
Luna-Triguero
,
J. M.
Vicent-Luna
,
A. P.
Zaderenko
,
A.
Sławek
,
R.
Sánchez-de-Armas
, and
S.
Calero
, “
Exploiting the π-bonding for the separation of benzene and cyclohexane in zeolites
,”
Chem. Eng. J.
398
,
125678
(
2020
).
18.
R. E.
Day
and
G. D.
Parfitt
, “
Factors involved in adsorption at the solid/liquid interface
,”
Powder Technol.
1
,
3
10
(
1967
).
19.
Y. G.
Bushuev
,
Y.
Grosu
, and
M.
Chorążewski
, “
Spontaneous dipole reorientation in confined water and its effect on wetting/dewetting of hydrophobic nanopores
,”
ACS Appl. Mater. Interfaces
16
,
7604
(
2024
).
20.
M. A.
van der Veen
,
S.
Canossa
,
M.
Wahiduzzaman
,
G.
Nenert
,
D.
Frohlich
,
D.
Rega
,
H.
Reinsch
,
L.
Shupletsov
,
K.
Markey
,
D. E.
De Vos
,
M.
Bonn
,
N.
Stock
,
G.
Maurin
, and
E. H. G.
Backus
, “
Confined water cluster formation in water harvesting by metal–organic frameworks: CAU-10-H versus CAU-10-CH3
,”
Adv. Mater.
36
,
2210050
(
2023
).
21.
E.
Guardia
,
I.
Skarmoutsos
, and
M.
Masia
, “
Hydrogen bonding and related properties in liquid water: A Car–Parrinello molecular dynamics simulation study
,”
J. Phys. Chem. B
119
,
8926
8938
(
2015
).
22.
B.
Yang
,
P.
Ren
,
L.
Xing
,
S.
Wang
, and
C.
Sun
, “
Roles of hydrogen bonding interactions and hydrophobic effects on enhanced water structure in aqueous solutions of amphiphilic organic molecules
,”
Spectrochim. Acta, Part A
296
,
122605
(
2023
).
23.
E.
Guardia
,
J.
Marti
,
J. A.
Padro
,
L.
Saiz
, and
A. V.
Komolkin
, “
Dynamics in hydrogen bonded liquids: Water and alcohols
,”
J. Mol. Liq.
96-97
,
3
17
(
2002
).
24.
A.
Luzar
and
D.
Chandler
, “
Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations
,”
J. Chem. Phys.
98
,
8160
8173
(
1993
).
25.
A.
Vishnyakov
,
A. P.
Lyubartsev
, and
A.
Laaksonen
, “
Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide–water mixture
,”
J. Phys. Chem. A
105
,
1702
1710
(
2001
).
26.
R. L.
Mancera
,
M.
Chalaris
,
K.
Refson
, and
J.
Samios
, “
Molecular dynamics simulation of dilute aqueous DMSO solutions. A temperature-dependence study of the hydrophobic and hydrophilic behaviour around DMSO
,”
Phys. Chem. Chem. Phys.
6
,
94
102
(
2004
).
27.
R. L.
Mancera
,
M.
Chalaris
, and
J.
Samios
, “
The concentration effect on the ‘hydrophobic’ and ‘hydrophilic’ behaviour around DMSO in dilute aqueous DMSO solutions. A computer simulation study
,”
J. Mol. Liq.
110
,
147
153
(
2004
).
28.
A.
Idrissi
,
B. A.
Marekha
,
M.
Barj
,
F. A.
Miannay
,
T.
Takamuku
,
V.
Raptis
,
J.
Samios
, and
P.
Jedlovszky
, “
Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations
,”
J. Chem. Phys.
146
,
234507
(
2017
).
29.
S. Y.
Lam
and
R. L.
Benoit
, “
Some thermodynamic properties of the dimethylsulfoxide–water and propylene carbonate–water systems at 25 °C
,”
Can. J. Chem.
52
,
718
722
(
1974
).
30.
Y.
Zhang
,
J. Y.
Chong
,
R.
Xu
, and
R.
Wang
, “
Effective separation of water-DMSO through solvent resistant membrane distillation (SR-MD)
,”
Water Res.
197
,
117103
(
2021
).
31.
B.
Van de Voorde
,
B.
Bueken
,
J.
Denayer
, and
D.
De Vos
, “
Adsorptive separation on metal–organic frameworks in the liquid phase
,”
Chem. Soc. Rev.
43
,
5766
5788
(
2014
).
32.
M.-M.
Titirici
,
R. J.
White
,
N.
Brun
,
V. L.
Budarin
,
D. S.
Su
,
F.
Del Monte
,
J. H.
Clark
, and
M. J.
MacLachlan
, “
Sustainable carbon materials
,”
Chem. Soc. Rev.
44
,
250
290
(
2015
).
33.
I.
Skarmoutsos
,
E. N.
Koukaras
,
C.
Galiotis
,
G. E.
Froudakis
, and
E.
Klontzas
, “
Porous carbon nanotube networks and pillared graphene materials exhibiting high SF6 adsorption uptake and separation selectivity of SF6/N2 fluid mixtures: A comparative molecular simulation study
,”
Microporous Mesoporous Mater.
307
,
110464
(
2020
).
34.
I.
Skarmoutsos
,
E. N.
Koukaras
, and
E.
Klontzas
, “
CF4 capture and separation of CF4–SF6 and CF4–N2 fluid mixtures using selected carbon nanoporous materials and metal–organic frameworks: A computational study
,”
ACS Omega
7
,
6691
6699
(
2022
).
35.
I.
Skarmoutsos
,
E. N.
Koukaras
, and
E.
Klontzas
, “
A computational study on phenyldiboronic acid-pillared graphene oxide frameworks for gas storage and separation
,”
ACS Appl. Nano Mater.
5
,
9286
9297
(
2022
).
36.
J. W.
Burress
,
S.
Gadipelli
,
J.
Ford
,
J. M.
Simmons
,
W.
Zhou
, and
T.
Yildirim
, “
Graphene oxide framework materials: Theoretical predictions and experimental results
,”
Angew. Chem.
122
,
9086
9088
(
2010
).
37.
G.
Srinivas
,
J. W.
Burress
,
J.
Ford
, and
T.
Yildirim
, “
Porous graphene oxide frameworks: Synthesis and gas sorption properties
,”
J. Mater. Chem.
21
,
11323
11329
(
2011
).
38.
S.
Granick
, “
Motions and relaxations of confined liquids
,”
Science
253
,
1374
1379
(
1991
).
39.
W. H.
Thompson
, “
Perspective: Dynamics of confined liquids
,”
J. Chem. Phys.
149
,
170901
(
2018
).
40.
W.
Gorbatschow
,
M.
Arndt
,
R.
Stannarius
, and
F.
Kremer
, “
Dynamics of H-bonded liquids confined to nanopores
,”
Europhys. Lett.
35
,
719
724
(
1996
).
41.
S.
Mossa
, “
Re-entrant phase transitions and dynamics of a nanoconfined ionic liquid
,”
Phys. Rev. X
8
,
031062
(
2018
).
42.
P.
Malgaretti
,
I.
Pagonabarraga
, and
J. M.
Rubi
, “
Entropic transport in confined media: A challenge for computational studies in biological and soft-matter systems
,”
Front. Phys.
1
,
21
(
2013
).
43.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
44.
W. L.
Jorgensen
, “
Optimized intermolecular potential functions for liquid alcohols
,”
J. Phys. Chem.
90
,
1276
1284
(
1986
).
45.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
,
81
101
(
2016
).
46.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
47.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
48.
W.
Smith
and
T. R.
Forester
, “
DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package
,”
J. Mol. Graphics
14
,
136
141
(
1996
).
49.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
2500
(
1986
).
50.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
51.
M. d.
Carmen Grande
,
J. A.
Juliá
,
M.
García
, and
C. M.
Marschoff
, “
On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
,”
J. Chem. Thermodyn.
39
,
1049
1056
(
2007
).
52.
K. S. W.
Sing
,
D. H.
Everett
,
R. A. W.
Haul
,
L.
Moscou
,
R. A.
Pierotti
,
J.
Rouquérol
, and
T.
Siemineiewska
, “
Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)
,”
Pure Appl. Chem.
57
,
603
619
(
1985
).
53.
P. B.
Balbuena
and
K. E.
Gubbins
, “
Theoretical interpretation of adsorption behavior of simple fluids in slit pores
,”
Langmuir
9
,
1801
1814
(
1993
).
54.
S. E.
McLain
,
A. K.
Soper
, and
A.
Luzar
, “
Investigations on the structure of dimethyl sulfoxide and acetone in aqueous solution
,”
J. Chem. Phys.
127
,
174515
(
2007
).
55.
I. A.
Borin
and
M. S.
Skaf
, “
Molecular association between water and dimethyl sulfoxide in solution: A molecular dynamics simulation study
,”
J. Chem. Phys.
110
,
6412
6420
(
1999
).
56.
J.
Martí
, “
Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations
,”
J. Chem. Phys.
110
,
6876
6886
(
1999
).
57.
C.
Nieto-Draghi
,
J.
Bonet Avalos
, and
B.
Rousseau
, “
Dynamic and structural behavior of different rigid nonpolarizable models of water
,”
J. Chem. Phys.
118
,
7954
7964
(
2003
).
58.
I.
Skarmoutsos
and
E.
Guardia
, “
Effect of the local hydrogen bonding network on the reorientational and translational dynamics in supercritical water
,”
J. Chem. Phys.
132
,
074502
(
2010
).
59.
I.
Skarmoutsos
,
A.
Henao
,
E.
Guardia
, and
J.
Samios
, “
On the different faces of the supercritical phase of water at a near-critical temperature: Pressure-induced structural transitions ranging from a gaslike fluid to a plastic crystal polymorph
,”
J. Phys. Chem. B
125
,
10260
10272
(
2021
).
60.
A.
Soper
,
F.
Bruni
, and
M. A.
Ricci
, “
Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data
,”
J. Chem. Phys.
106
,
247
254
(
1997
).
61.
D. C.
Rapaport
, “
Hydrogen bonds in water
,”
Mol. Phys.
50
,
1151
1162
(
1983
).
62.
M.
Matsumoto
and
K. E.
Gubbins
, “
Hydrogen bonding in liquid methanol
,”
J. Chem. Phys.
93
,
1981
1994
(
1990
).
63.
E.
Guardia
,
D.
Laria
, and
J.
Marti
, “
Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions
,”
J. Phys. Chem. B
110
,
6332
6338
(
2006
).
64.
S. M.
Kashid
,
G. Y.
Jin
,
S.
Chakrabarty
,
Y. S.
Kim
, and
S.
Bagchi
, “
Two-dimensional infrared spectroscopy reveals cosolvent-composition-dependent crossover in intermolecular hydrogen-bond dynamics
,”
J. Phys. Chem. Lett.
8
,
1604
1609
(
2017
).
65.
M.
Aguilar
,
H.
Dominguez
, and
O.
Pizio
, “
Revisiting the composition dependence of the properties of water-dimethyl sulfoxide liquid mixtures. Molecular dynamics computer simulations
,”
Condens. Matter Phys.
25
(
3
),
33202
(
2022
).
66.
D. B.
Wong
,
K. P.
Sokolowsky
,
M. I.
El-Barghouthi
,
E. E.
Fenn
,
C. H.
Giammanco
,
A. L.
Sturlaugson
, and
M. D.
Fayer
, “
Water dynamics in water/DMSO binary mixtures
,”
J. Phys. Chem. B
116
,
5479
5490
(
2012
).
67.
X.
Zhang
,
Z.
Wang
,
Z.
Chen
,
H.
Li
,
L.
Zhang
,
J.
Ye
,
Q.
Zhang
, and
W.
Zhuang
, “
Molecular mechanism of water reorientation dynamics in dimethyl sulfoxide aqueous mixtures
,”
J. Phys. Chem. B
124
,
1806
1816
(
2020
).
You do not currently have access to this content.