When using metal–organic frameworks (MOFs) as electric field-dependent sensor devices, understanding their dielectric response is crucial as the orientation of polar groups is largely affected by confinement. To shed light on this at the molecular level, the response to a static field was computationally investigated for two structurally related MOFs, depending on their loading with guest molecules. The pillared-layer MOFs differ in their pillar moiety, with one bearing a rotatable permanent dipole moment and the other being non-polar. Two guest molecules with and without polarity, namely, methanol and methane, were considered. A comprehensive picture of the response of the guest molecules could be achieved with respect to both the amount and polarity of the confined species. For both MOFs, the dielectric response is very sensitive to the introduction of methanol, showing an anisotropic and non-linear increase in the system’s relative permittivity expressed by a strongly increasing polarization response to external electric fields scaling with the number of confined methanol molecules. As expected, the effect of methane in the non-dipolar MOF is negligible, whereas subtle differences can be observed for the dipolar response of the MOF with rotatable dipolar linker groups. Taking advantage of these anisotropic and guest-molecule-specific confinement effects may open pathways for future sensing applications. Finally, methanol-induced global framework dynamics were observed in both MOFs.

1.
S.
Kitagawa
,
R.
Kitaura
, and
S.
Noro
, “
Functional porous coordination polymers
,”
Angew. Chem. Int Ed.
43
,
2334
2375
(
2004
).
2.
G.
Ferey
, “
Hybrid porous solids: Past, present, future
,”
Chem. Soc. Rev.
37
,
191
(
2008
).
3.
H.-C.
Zhou
,
J. R.
Long
, and
O. M.
Yaghi
, “
Introduction to metal-organic frameworks
,”
Chem. Rev.
112
,
673
(
2012
).
4.
O. M.
Yaghi
, “
Reticular chemistry in all dimensions
,”
ACS Cent. Sci.
5
,
1295
1300
(
2019
).
5.
C. H.
Hendon
,
A. J.
Rieth
,
M. D.
Korzyński
, and
M.
Dincă
, “
Grand challenges and future opportunities for metal-organic frameworks
,”
ACS Cent. Sci.
3
,
554
563
(
2017
).
6.
J.
Lee
,
O. K.
Farha
,
J.
Roberts
,
K. A.
Scheidt
,
S. T.
Nguyen
, and
J. T.
Hupp
, “
Metal–organic framework materials as catalysts
,”
Chem. Soc. Rev.
38
,
1450
1459
(
2009
).
7.
A. U.
Czaja
,
N.
Trukhan
, and
U.
Müller
, “
Industrial applications of metal-organic frameworks
,”
Chem. Soc. Rev.
38
,
1284
(
2009
).
8.
M.
Ranocchiari
and
J. A. V.
Bokhoven
, “
Catalysis by metal-organic frameworks: Fundamentals and opportunities
,”
Phys. Chem. Chem. Phys.
13
,
6388
(
2011
).
9.
H.
Kobayashi
,
Y.
Mitsuka
, and
H.
Kitagawa
, “
Metal nanoparticles covered with a metal–organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions
,”
Inorg. Chem.
55
,
7301
(
2016
).
10.
L.
Alaerts
,
C.
Kirschhock
,
M.
Maes
,
M.
van der Veen
,
V.
Finsy
,
A.
Depla
,
J.
Martens
,
G.
Baron
,
P.
Jacobs
,
J.
Denayer
, and
D.
De Vos
, “
Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47
,”
Angew. Chem., Int. Ed.
46
,
4293
4297
(
2007
).
11.
B.
Li
,
H.-M.
Wen
,
W.
Zhou
, and
B.
Chen
, “
Porous metal-organic frameworks for gas storage and separation: What, how, and why?
,”
J. Phys. Chem. Lett.
5
,
3468
3479
(
2014
).
12.
Y.
Wang
and
D.
Zhao
, “
Beyond equilibrium: Metal-organic frameworks for molecular sieving and kinetic gas separation
,”
Cryst. Growth Des.
17
,
2291
2308
(
2017
).
13.
P.
Horcajada
,
T.
Chalati
,
C.
Serre
,
B.
Gillet
,
C.
Sebrie
,
T.
Baati
,
J. F.
Eubank
,
D.
Heurtaux
,
P.
Clayette
,
C.
Kreuz
,
J.-S.
Chang
,
Y. K.
Hwang
,
V.
Marsaud
,
P.-N.
Bories
,
L.
Cynober
,
S.
Gil
,
G.
Férey
,
P.
Couvreur
, and
R.
Gref
, “
Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
,”
Nat. Mater.
9
,
172
178
(
2010
).
14.
L. E.
Kreno
,
K.
Leong
,
O. K.
Farha
,
M.
Allendorf
,
R. P.
Van Duyne
, and
J. T.
Hupp
, “
Metal-organic framework materials as chemical sensors
,”
Chem. Rev.
112
,
1105
(
2012
).
15.
I.
Stassen
,
N.
Burtch
,
A.
Talin
,
P.
Falcaro
,
M.
Allendorf
, and
R.
Ameloot
, “
An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors
,”
Chem. Soc. Rev.
46
,
3185
(
2017
).
16.
A. E.
Baumann
,
D. A.
Burns
,
B.
Liu
, and
V. S.
Thoi
, “
Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices
,”
Commun. Chem.
2
,
86
(
2019
).
17.
X. F.
Lu
,
Y.
Fang
,
D.
Luan
, and
X. W. D.
Lou
, “
Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review
,”
Nano Lett.
21
,
1555
1565
(
2021
).
18.
H.-B.
Cui
,
K.
Takahashi
,
Y.
Okano
,
H.
Kobayashi
,
Z.
Wang
, and
A.
Kobayashi
, “
Dielectric properties of porous molecular crystals that contain polar molecules
,”
Angew. Chem., Int. Ed.
44
,
6508
6512
(
2005
).
19.
H.
Cui
,
B.
Zhou
,
L.-S.
Long
,
Y.
Okano
,
H.
Kobayashi
, and
A.
Kobayashi
, “
A porous coordination-polymer crystal containing one-dimensional water chains exhibits guest-induced lattice distortion and a dielectric anomaly
,”
Angew. Chem., Int. Ed.
47
,
3376
3380
(
2008
).
20.
B.
Zhou
,
A.
Kobayashi
,
H.-B.
Cui
,
L.-S.
Long
,
H.
Fujimori
, and
H.
Kobayashi
, “
Anomalous dielectric behavior and thermal motion of water molecules confined in channels of porous coordination polymer crystals
,”
J. Am. Chem. Soc.
133
,
5736
5739
(
2011
).
21.
A.
Planchais
,
S.
Devautour-Vinot
,
F.
Salles
,
F.
Ragon
,
T.
Devic
,
C.
Serre
, and
G.
Maurin
, “
A joint experimental/computational exploration of the dynamics of confined water/Zr-based MOFs systems
,”
J. Phys. Chem. C
118
,
14441
14448
(
2014
).
22.
S.
Balčiūnas
,
D.
Pavlovaitė
,
M.
Kinka
,
J.-Y.
Yeh
,
P.-C.
Han
,
F.-K.
Shieh
,
K. C.-W.
Wu
,
M.
Šimėnas
,
R.
Grigalaitis
, and
J.
Banys
, “
Dielectric spectroscopy of water dynamics in functionalized UiO-66 metal-organic frameworks
,”
Molecules
25
,
1962
(
2020
).
23.
R.
Renou
,
A.
Szymczyk
,
G.
Maurin
, and
A.
Ghoufi
, “
Dielectric anisotropy of water confined into the MIL-53(Cr) metal-organic framework
,”
Mol. Simul.
41
,
483
489
(
2015
).
24.
C.
Sapsanis
,
H.
Omran
,
V.
Chernikova
,
O.
Shekhah
,
Y.
Belmabkhout
,
U.
Buttner
,
M.
Eddaoudi
, and
K. N.
Salama
, “
Insights on capacitive interdigitated electrodes coated with MOF thin films: Humidity and VOCs sensing as a case study
,”
Sensors
15
,
18153
(
2015
).
25.
M. S.
Hosseini
,
S.
Zeinali
, and
M. H.
Sheikhi
, “
Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors
,”
Sens. Actuators, B
230
,
9
16
(
2016
).
26.
M. A.
Andrés
,
M. T.
Vijjapu
,
S. G.
Surya
,
O.
Shekhah
,
K. N.
Salama
,
C.
Serre
,
M.
Eddaoudi
,
O.
Roubeau
, and
I.
Gascón
, “
Methanol and humidity capacitive sensors based on thin films of MOF nanoparticles
,”
ACS Appl. Mater. Interfaces
12
,
4155
4162
(
2020
).
27.
M.
Eddaoudi
,
J.
Kim
,
N.
Rosi
,
D.
Vodak
,
J.
Wachter
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage
,”
Science
295
,
469
472
(
2002
).
28.
E. B.
Winston
,
P. J.
Lowell
,
J.
Vacek
,
J.
Chocholoušová
,
J.
Michl
, and
J. C.
Price
, “
Dipolar molecular rotors in the metal-organic framework crystal IRMOF-2
,”
Phys. Chem. Chem. Phys.
10
,
5188
5191
(
2008
).
29.
S.
Namsani
and
A. O.
Yazaydin
, “
Electric field induced rotation of halogenated organic linkers in isoreticular metal-organic frameworks for nanofluidic applications
,”
Mol. Syst. Des. Eng.
3
,
951
958
(
2018
).
30.
A.
Gonzalez-Nelson
,
S.
Mula
,
M.
Šimėnas
,
S.
Balčiūnas
,
A. R.
Altenhof
,
C. S.
Vojvodin
,
S.
Canossa
,
J.
Banys
,
R. W.
Schurko
,
F.-X.
Coudert
, and
M. A.
van der Veen
, “
Emergence of coupled rotor dynamics in metal-organic frameworks via tuned steric interactions
,”
J. Am. Chem. Soc.
143
,
12053
12062
(
2021
).
31.
Y.-S.
Su
,
E. S.
Lamb
,
I.
Liepuoniute
,
A.
Chronister
,
A. L.
Stanton
,
P.
Guzman
,
S.
Pérez-Estrada
,
T. Y.
Chang
,
K. N.
Houk
,
M. A.
Garcia-Garibay
, and
S. E.
Brown
, “
Dipolar order in an amphidynamic crystalline metal-organic framework through reorienting linkers
,”
Nat. Chem.
13
,
278
283
(
2021
).
32.
J.
Dürholt
,
B. F.
Jahromi
, and
R.
Schmid
, “
Tuning the electric field response of MOFs by rotatable dipolar linkers
,”
ACS Cent. Sci.
5
,
1440
1448
(
2019
).
33.
S.
Siwaipram
,
P. A.
Bopp
,
J.-C.
Soetens
,
R.
Schmid
, and
S.
Bureekaew
, “
Development of a MOF-FF-compatible interaction model for liquid methanol and Cl in methanol
,”
J. Mol. Liq.
285
,
526
534
(
2019
).
34.
S.
Siwaipram
,
P. A.
Bopp
,
J.
Keupp
,
L.
Pukdeejorhor
,
J.-C.
Soetens
,
S.
Bureekaew
, and
R.
Schmid
, “
Molecular insight into the swelling of a MOF: A force-field investigation of methanol uptake in MIL-88b(Fe)-Cl
,”
J. Phys. Chem. C
125
,
12837
12847
(
2021
).
35.
S.
Siwaipram
,
P. A.
Bopp
,
P.
Ponchai
,
J.-C.
Soetens
,
J.-y.
Hasegawa
,
R.
Schmid
, and
S.
Bureekaew
, “
MD studies of methanol confined in the metal-organic framework MOF MIL-88b-Cl
,”
J. Mol. Liq.
359
,
119252
(
2022
).
36.
C.
Zhang
and
M.
Sprik
, “
Computing the dielectric constant of liquid water at constant dielectric displacement
,”
Phys. Rev. B
93
,
144201
(
2016
).
37.
M.
Stengel
,
N. A.
Spaldin
, and
D.
Vanderbilt
, “
Electric displacement as the fundamental variable in electronic-structure calculations
,”
Nat. Phys.
5
,
304
308
(
2009
).
38.
N. A.
Spaldin
, “
A beginner’s guide to the modern theory of polarization
,”
J. Solid State Chem.
195
,
2
10
(
2012
).
39.
M.
Born
,
E.
Wolf
,
A. B.
Bhatia
,
P. C.
Clemmow
,
D.
Gabor
,
A. R.
Stokes
,
A. M.
Taylor
,
P. A.
Wayman
, and
W. L.
Wilcock
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
).
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
41.
S.
Bureekaew
,
S.
Amirjalayer
,
M.
Tafipolsky
,
C.
Spickermann
,
T. K.
Roy
, and
R.
Schmid
, “
MOF-FF – A flexible first-principles derived force field for metal-organic frameworks
,”
Phys. Status Solidi B
250
,
1128
1141
(
2013
).
42.
J.
Dürholt
,
G.
Fraux
,
F.-X.
Coudert
, and
R.
Schmid
, “
Ab initio derived force fields for zeolitic imidazolate frameworks: MOF-FF for ZIFS
,”
J. Chem. Theory Comput.
15
,
2420
2432
(
2019
).
43.
R.
Schmid
,
Mofplus project webpage
, see https://www.mofplus.org/ (Accessed July 2020).
44.
J.
Keupp
and
R.
Schmid
, “
Topoff: MOF structure prediction using specifically optimized blueprints
,”
Faraday Discuss.
211
,
79
101
(
2018
).
45.
S.
Bureekaew
,
V.
Balwani
,
S.
Amirjalayer
, and
R.
Schmid
, “
Isoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: Structural prediction by the reverse topological approach
,”
CrystEngComm
17
,
344
352
(
2015
).
46.
L.
Sarkisov
and
A.
Harrison
, “
Computational structure characterisation tools in application to ordered and disordered porous materials
,”
Mol. Simul.
37
,
1248
1257
(
2011
).
47.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Hilger
,
Bristol
,
1988
).
48.
E.
Pollock
and
J.
Glosli
, “
Comments on P3M, FMM, and the ewald method for large periodic coulombic systems
,”
Comput. Phys. Commun.
95
,
93
110
(
1996
).
49.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
50.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
51.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
52.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
53.
J.
Spencer
,
pyblock
, see http://github.com/jsspencer/pyblock (Accessed July 2020).
54.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
55.
J.
Stone
, “
An efficient library for parallel ray tracing and animation
,” M.S. thesis (
Computer Science Department, University of Missouri-Rolla
,
1998
).
56.
T.
Loiseau
,
C.
Serre
,
C.
Huguenard
,
G.
Fink
,
F.
Taulelle
,
M.
Henry
,
T.
Bataille
, and
G.
Férey
, “
A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration
,”
Chem. Eur. J.
10
,
1373
1382
(
2004
).
57.
A.
Ghoufi
,
K.
Benhamed
,
L.
Boukli-Hacene
, and
G.
Maurin
, “
Electrically induced breathing of the MIL-53(Cr) metal–organic framework
,”
ACS Cent. Sci.
3
,
394
(
2017
).

Supplementary Material

You do not currently have access to this content.