This study introduces recommendations for conducting molecular simulations of vapor adsorption, with an emphasis on enhancing the accuracy, reproducibility, and comparability of results. The first aspect we address is consistency in the implementation of some details of typical molecular models, including tail corrections and cutoff distances, due to their significant influence on generated data. We highlight the importance of explicitly calculating the saturation pressures at relevant temperatures using methods such as Gibbs ensemble Monte Carlo simulations and illustrate some pitfalls in extrapolating saturation pressures using this method. For grand canonical Monte Carlo (GCMC) simulations, the input fugacity is usually calculated using an equation of state, which often requires the critical parameters of the fluid. We show the importance of using critical parameters derived from the simulation with the same model to ensure internal consistency between the simulated explicit adsorbate phase and the implicit bulk phase in GCMC. We show the advantages of presenting isotherms on a relative pressure scale to facilitate easier comparison among models and with experiment. Extending these guidelines to a practical case study, we evaluate the performance of various isoreticular metal–organic frameworks (MOFs) in adsorption cooling applications. This includes examining the advantages of using propane and isobutane as working fluids and identifying MOFs with a superior performance.

1.
D.
Dubbeldam
,
S.
Calero
,
T. J. H.
Vlugt
, and
R. Q.
Snurr
, “
Molecular simulations of adsorption and diffusion in crystalline nanoporous materials
,” in
Handbook of Porous Materials: Synthesis, Properties, Modeling and Key Applications
(
World Scientific Publishing
,
2021
), Vol.
4
, pp.
199
319
.
2.
F.
Formalik
,
K.
Shi
,
F.
Joodaki
,
X.
Wang
,
R. Q.
Snurr
,
F.
Formalik
,
K.
Shi
,
F.
Joodaki
,
X.
Wang
, and
R. Q.
Snurr
, “
Exploring the structural, dynamic, and functional properties of metal-organic frameworks through molecular modeling
,”
Adv. Funct. Mater.
(published online,
2023
).
3.
A. Ö.
Yazaydin
,
R. Q.
Snurr
,
T. H.
Park
,
K.
Koh
,
J.
Liu
,
M. D.
LeVan
,
A. I.
Benin
,
P.
Jakubczak
,
M.
Lanuza
,
D. B.
Galloway
,
J. J.
Low
, and
R. R.
Willis
, “
Screening of metal–organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach
,”
J. Am. Chem. Soc.
131
(
51
),
18198
18199
(
2009
).
4.
L. C.
Lin
,
A. H.
Berger
,
R. L.
Martin
,
J.
Kim
,
J. A.
Swisher
,
K.
Jariwala
,
C. H.
Rycroft
,
A. S.
Bhown
,
M. W.
Deem
,
M.
Haranczyk
, and
B.
Smit
, “
In silico screening of carbon-capture materials
,”
Nat. Mater.
11
(
7
),
633
641
(
2012
).
5.
A. H.
Farmahini
,
S.
Krishnamurthy
,
D.
Friedrich
,
S.
Brandani
, and
L.
Sarkisov
, “
Performance-based screening of porous materials for carbon capture
,”
Chem. Rev.
121
(
17
),
10666
10741
(
2021
).
6.
J.
Park
,
Y.
Lim
,
S.
Lee
, and
J.
Kim
, “
Computational design of metal–organic frameworks with unprecedented high hydrogen working capacity and high synthesizability
,”
Chem. Mater.
35
,
9
(
2023
).
7.
H. C.
Gulbalkan
,
Z. P.
Haslak
,
C.
Altintas
,
A.
Uzun
, and
S.
Keskin
, “
Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation
,”
Sep. Purif. Technol.
287
,
120578
(
2022
).
8.
J.
Rogacka
,
A.
Seremak
,
A.
Luna-Triguero
,
F.
Formalik
,
I.
Matito-Martos
,
L.
Firlej
,
S.
Calero
, and
B.
Kuchta
, “
High-throughput screening of metal–organic frameworks for CO2 and CH4 separation in the presence of water
,”
Chem. Eng. J.
403
,
126392
(
2021
).
9.
H.
Daglar
and
S.
Keskin
, “
Computational screening of metal-organic frameworks for membrane-based CO2/N2/H2O separations: Best materials for flue gas separation
,”
J. Phys. Chem. C
122
(
30
),
17347
17357
(
2018
).
10.
M.
Erdös
,
M. F.
de Lange
,
F.
Kapteijn
,
O. A.
Moultos
, and
T. J. H.
Vlugt
, “
In silico screening of metal-organic frameworks for adsorption-driven heat pumps and chillers
,”
ACS Appl. Mater. Interfaces
10
(
32
),
27074
27087
(
2018
).
11.
W.
Li
,
X.
Xia
, and
S.
Li
, “
Screening of covalent-organic frameworks for adsorption heat pumps
,”
ACS Appl. Mater. Interfaces
12
(
2
),
3265
3273
(
2020
).
12.
J. C.
Wagner
,
K. M.
Hunter
,
F.
Paesani
, and
W.
Xiong
, “
Water capture mechanisms at zeolitic imidazolate framework interfaces
,”
J. Am. Chem. Soc.
143
(
50
),
21189
21194
(
2021
).
13.
B.
Mazur
,
F.
Formalik
,
K.
Roztocki
,
V.
Bon
,
S.
Kaskel
,
A. V.
Neimark
,
L.
Firlej
, and
B.
Kuchta
, “
Quasicontinuous cooperative adsorption mechanism in crystalline nanoporous materials
,”
J. Phys. Chem. Lett.
13
(
30
),
6961
6965
(
2022
).
14.
A.
Gupta
,
S.
Chempath
,
M. J.
Sanborn
,
L. A.
Clark
, and
R. Q.
Snurr
, “
Object-oriented programming paradigms for molecular modeling
,”
Mol. Simul.
29
(
1
),
29
46
(
2010
).
15.
J. K.
Shah
,
E.
Marin-Rimoldi
,
R. G.
Mullen
,
B. P.
Keene
,
S.
Khan
,
A. S.
Paluch
,
N.
Rai
,
L. L.
Romanielo
,
T. W.
Rosch
,
B.
Yoo
, and
E. J.
Maginn
, “
Cassandra: An open source Monte Carlo package for molecular simulation
,”
J. Comput. Chem.
38
(
19
),
1727
1739
(
2017
).
16.
Y.
Nejahi
,
M.
Soroush Barhaghi
,
J.
Mick
,
B.
Jackman
,
K.
Rushaidat
,
Y.
Li
,
L.
Schwiebert
, and
J.
Potoff
, “
GOMC: GPU optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids
,”
SoftwareX
9
,
20
27
(
2019
).
17.
M. G.
Martin
, “
MCCCS towhee: A tool for Monte Carlo molecular simulation
,”
Mol. Simul.
39
(
14–15
),
1212
1222
(
2013
).
18.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
(
2
),
81
101
(
2016
).
19.
J. A.
Purton
,
J. C.
Crabtree
, and
S. C.
Parker
, “
DL_MONTE: A general purpose program for parallel Monte Carlo simulation
,”
Mol. Simul.
39
(
14–15
),
1240
1252
(
2013
).
20.
H. W.
Hatch
,
N. A.
Mahynski
, and
V. K.
Shen
, “
FEASST: Free energy and advanced sampling simulation toolkit
,”
J. Res. Natl. Inst. Stand. Technol.
123
,
123004
(
2018
).
21.
D.
Frenkel
, “
Simulations: The dark side
,”
Eur. Phys. J. Plus
128
(
1
),
10
21
(
2013
).
22.
D. W.
Siderius
and
V. K.
Shen
, “
Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials
,”
J. Phys. Chem. C
117
(
11
),
5861
5872
(
2013
).
23.
J. R.
Errington
, “
Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation
,”
J. Chem. Phys.
118
(
22
),
9915
9925
(
2003
).
24.
V. K.
Shen
and
J. R.
Errington
, “
Metastability and instability in the Lennard-Jones fluid investigated by transition-matrix Monte Carlo
,”
J. Phys. Chem. B
108
(
51
),
19595
19606
(
2004
).
25.
D.
Dubbeldam
,
A.
Torres-Knoop
, and
K. S.
Walton
, “
On the inner workings of Monte Carlo codes
,”
Mol. Simul.
39
(
14–15
),
1253
1292
(
2013
).
26.
K. M.
Jablonka
,
D.
Ongari
, and
B.
Smit
, “
Applicability of tail corrections in the molecular simulations of porous materials
,”
J. Chem. Theory Comput.
15
(
10
),
5635
5641
(
2019
).
27.
M. J.
Lennox
,
M.
Bound
,
A.
Henley
, and
E.
Besley
, “
The right isotherms for the right reasons? Validation of generic force fields for prediction of methane adsorption in metal-organic frameworks
,”
Mol. Simul.
43
(
10–11
),
828
837
(
2017
).
28.
C. D.
Holcomb
,
P.
Clancy
, and
J. A.
Zollweg
, “
A critical study of the simulation of the liquid-vapour interface of a Lennard-Jones fluid
,”
Mol. Phys.
78
(
2
),
437
459
(
1993
).
29.
N. M.
Fischer
,
P. J.
van Maaren
,
J. C.
Ditz
,
A.
Yildirim
, and
D.
van Der Spoel
, “
Properties of organic liquids when simulated with long-range Lennard-Jones interactions
,”
J. Chem. Theory Comput.
11
(
7
),
2938
2944
(
2015
).
30.
A.
Trokhymchuk
and
J.
Alejandre
, “
Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers
,”
J. Chem. Phys.
111
(
18
),
8510
8523
(
1999
).
31.
J. C.
Pàmies
,
C.
McCabe
,
P. T.
Cummings
, and
L. F.
Vega
, “
Coexistence densities of methane and propane by canonical molecular dynamics and Gibbs ensemble Monte Carlo simulations
,”
Mol. Simul.
29
(
6–7
),
463
470
(
2003
).
32.
A.
Datar
,
M.
Witman
, and
L. C.
Lin
, “
Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights
,”
AIChE J.
67
(
12
),
e17447
(
2021
).
33.
D. W.
Siderius
,
H. W.
Hatch
,
J. R.
Errington
, and
V. K.
Shen
, “
Comments on ‘Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights
,’”
AIChE J.
68
(
8
),
e17686
(
2022
).
34.
M. F.
De Lange
,
K. J. F. M.
Verouden
,
T. J. H.
Vlugt
,
J.
Gascon
, and
F.
Kapteijn
, “
Adsorption-driven heat pumps: The potential of metal-organic frameworks
,”
Chem. Rev.
115
,
12205
12250
(
2015
).
35.
R. M.
Madero-Castro
,
A.
Luna-Triguero
,
C.
González-Galán
,
J. M.
Vicent-Luna
, and
S.
Calero
, “
Alcohol-based adsorption heat pumps using hydrophobic metal-organic frameworks
,”
J. Mater. Chem. A
12
(
6
),
3434
3448
(
2024
).
36.
D.
Lenzen
,
J.
Zhao
,
S. J.
Ernst
,
M.
Wahiduzzaman
,
A.
Ken Inge
,
D.
Fröhlich
,
H.
Xu
,
H. J.
Bart
,
C.
Janiak
,
S.
Henninger
,
G.
Maurin
, and
X.
Zou
, “
Rational design of a robust aluminum metal-organic framework for multi-purpose water-sorption-driven heat allocations
,”
Nat Commun.
11
,
5112
(
2020
).
37.
M. F.
De Lange
,
B. L.
Van Velzen
,
C. P.
Ottevanger
,
K. J. F. M.
Verouden
,
L. C.
Lin
,
T. J. H.
Vlugt
,
J.
Gascon
, and
F.
Kapteijn
, “
Metal-organic frameworks in adsorption-driven heat pumps: The potential of alcohols as working fluids
,”
Langmuir
31
(
46
),
12783
12796
(
2015
).
38.
A.
Luna-Triguero
,
A.
Sławek
,
H. P.
Huinink
,
T. J. H.
Vlugt
,
A.
Poursaeidesfahani
,
J. M.
Vicent-Luna
, and
S.
Calero
, “
Enhancing the water capacity in Zr-based metal-organic framework for heat pump and atmospheric water generator applications
,”
ACS Appl. Nano Mater.
2
(
5
),
3050
3059
(
2019
).
39.
W.
Li
,
X.
Xia
,
M.
Cao
, and
S.
Li
, “
Structure-property relationship of metal-organic frameworks for alcohol-based adsorption-driven heat pumps via high-throughput computational screening
,”
J. Mater. Chem. A
7
(
13
),
7470
7479
(
2019
).
40.
Z.
Liu
,
W.
Li
,
P. Z.
Moghadam
, and
S.
Li
, “
Screening adsorbent-water adsorption heat pumps based on an experimental water adsorption isotherm database
,”
Sustainable Energy Fuels
5
(
4
),
1075
1084
(
2021
).
41.
Z.
Liu
,
W.
Li
,
S.
Cai
,
Z.
Tu
,
X.
Luo
, and
S.
Li
, “
Screening versatile water/adsorbent working pairs for wide operating conditions of adsorption heat pumps
,”
Sustainable Energy Fuels
6
(
2
),
309
319
(
2022
).
42.
Z.
Liu
,
G.
An
,
X.
Xia
,
S.
Wu
,
S.
Li
, and
L.
Wang
, “
The potential use of metal-organic framework/ammonia working pairs in adsorption chillers
,”
J. Mater. Chem. A
9
(
10
),
6188
6195
(
2021
).
43.
D.
Lenzen
,
J.
Zhao
,
S.-J.
Ernst
,
M.
Wahiduzzaman
,
A. K.
Inge
,
D.
Fröhlich
,
H.
Xu
,
H.-J.
Bart
,
C.
Janiak
,
S.
Henninger
,
G.
Maurin
,
X.
Zou
, and
N.
Stock
, “
A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling
,”
Nat Commun.
10
,
3025
(
2019
).
44.
See https://www.federalregister.gov/documents/2011/12/20/2011-32175/protection-of-stratospheric-ozone-listing-of-substitutes-for-ozone-depleting-substances-hydrocarbon for Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Hydrocarbon Refrigerants; accessed 23 September 2022.
45.
H.
Chen
,
Z.
Chen
,
O. K.
Farha
, and
R. Q.
Snurr
, “
High propane and isobutane adsorption cooling capacities in zirconium-based metal-organic frameworks predicted by molecular simulations
,”
ACS Sustainable Chem. Eng.
7
(
22
),
18242
18246
(
2019
).
46.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
(
25
),
10024
10035
(
1992
).
47.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
(
26
),
8897
8909
(
1990
).
48.
O. M.
Yaghi
,
M.
O’Keeffe
,
N. W.
Ockwig
,
H. K.
Chae
,
M.
Eddaoudi
, and
J.
Kim
, “
Reticular synthesis and the design of new materials
,”
Nature
423
(
6941
),
705
714
(
2003
).
49.
B. L.
Eggimann
,
A. J.
Sunnarborg
,
H. D.
Stern
,
A. P.
Bliss
, and
J. I.
Siepmann
, “
An online parameter and property database for the TraPPE force field
,”
Mol. Simul.
40
(
1–3
),
101
105
(
2013
).
50.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
(
14
),
2569
2577
(
1998
).
51.
N.
Sokkalingam
,
G.
Kamath
,
M.
Coscione
, and
J. J.
Potoff
, “
Extension of the transferable potentials for phase equilibria force field to dimethylmethyl phosphonate, sarin, and soman
,”
J. Phys. Chem. B
113
(
30
),
10292
10297
(
2009
).
52.
C. D.
Wick
,
J. M.
Stubbs
,
N.
Rai
, and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine
,”
J. Phys. Chem. B
109
(
40
),
18974
18982
(
2005
).
53.
B.
Liu
,
B.
Smit
,
F.
Rey
,
S.
Valencia
, and
S.
Calero
, “
A new united atom force field for adsorption of alkenes in zeolites
,”
J. Phys. Chem. C
112
(
7
),
2492
2498
(
2008
).
54.
A.
Emelianova
,
E. A.
Basharova
,
A. L.
Kolesnikov
,
E. V.
Arribas
,
E. V.
Ivanova
, and
G. Y.
Gor
, “
Force fields for molecular modeling of sarin and its simulants: DMMP and DIMP
,”
J. Phys. Chem. B
125
(
16
),
4086
4098
(
2021
).
55.
B. L.
Eggimann
,
Y.
Sun
,
R. F.
Dejaco
,
R.
Singh
,
M.
Ahsan
,
T. R.
Josephson
, and
J. I.
Siepmann
, “
Assessing the quality of molecular simulations for vapor-liquid equilibria: An analysis of the TraPPE database
,”
J. Chem. Eng. Data
65
(
3
),
1330
1344
(
2020
).
56.
J.
Mick
,
E.
Hailat
,
V.
Russo
,
K.
Rushaidat
,
L.
Schwiebert
, and
J.
Potoff
, “
GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
,”
Comput. Phys. Commun.
184
(
12
),
2662
2669
(
2013
).
57.
Y.
Nejahi
,
M. S.
Barhaghi
,
G.
Schwing
,
L.
Schwiebert
, and
J.
Potoff
, “
Update 2.70 to ‘GOMC: GPU optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids
,’”
SoftwareX
13
,
100627
(
2021
).
58.
J.
Mick
,
E.
Hailat
,
V.
Russo
,
K.
Rushaidat
,
L.
Schwiebert
, and
J.
Potoff
, “
PU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
,”
Comput. Phys. Commun.
184
(
12
),
2662
(
2013
).
59.
J. S.
Lopez-Echeverry
,
S.
Reif-Acherman
, and
E.
Araujo-Lopez
, “
Peng-Robinson equation of state: 40 years through cubics
,”
Fluid Phase Equilib.
447
,
39
71
(
2017
).
60.
See https://webbook.nist.gov/cgi/cbook.cgi?ID=74-98-6 for NIST Chemistry WebBook, SRD 69; accessed 11 January 2024.
61.
C.
Desgranges
and
J.
Delhommelle
, “
Benchmark free energies and entropies for saturated and compressed water
,”
J. Chem. Eng. Data
62
(
11
),
4032
4040
(
2017
).
63.
H.
Deng
,
S.
Grunder
,
K. E.
Cordova
,
C.
Valente
,
H.
Furukawa
,
M.
Hmadeh
,
F.
Gándara
,
A. C.
Whalley
,
Z.
Liu
,
S.
Asahina
,
H.
Kazumori
,
M.
O’Keeffe
,
O.
Terasaki
,
J. F.
Stoddart
, and
O. M.
Yaghi
, “
Large-pore apertures in a series of metal-organic frameworks
,”
Science
336
(
6084
),
1018
1023
(
2012
).
64.
M.
Thommes
,
K.
Kaneko
,
A. v.
Neimark
,
J. P.
Olivier
,
F.
Rodriguez-Reinoso
,
J.
Rouquerol
, and
K. S. W.
Sing
, “
Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
,”
Pure Appl. Chem.
87
(
9–10
),
1051
1069
(
2015
).
65.
Y. G.
Chung
,
J.
Camp
,
M.
Haranczyk
,
B. J.
Sikora
,
W.
Bury
,
V.
Krungleviciute
,
T.
Yildirim
,
O. K.
Farha
,
D. S.
Sholl
, and
R. Q.
Snurr
, “
Computation-ready, experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals
,”
Chem. Mater.
26
(
21
),
6185
6192
(
2014
).
66.
Y. G.
Chung
,
E.
Haldoupis
,
B. J.
Bucior
,
M.
Haranczyk
,
S.
Lee
,
H.
Zhang
,
K. D.
Vogiatzis
,
M.
Milisavljevic
,
S.
Ling
,
J. S.
Camp
,
B.
Slater
,
J. I.
Siepmann
,
D. S.
Sholl
, and
R. Q.
Snurr
, “
Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019
,”
J. Chem. Eng. Data
64
(
12
),
5985
5998
(
2019
).
67.
B.
Coasne
,
K. E.
Gubbins
, and
R. J.-M.
Pellenq
, “
Temperature effect on adsorption/desorption isotherms for a simple fluid confined within various nanopores
,”
Adsorption
11
,
289
294
(
2005
).
68.
X.
Xia
,
Z.
Liu
, and
S.
Li
, “
Adsorption characteristics and cooling/heating performance of COF-5
,”
Appl. Therm. Eng.
176
,
115442
(
2020
).
69.
Y.
Jiang
,
M. H.
Bagheri
,
R. T.
Loibl
, and
S. N.
Schiffres
, “
Thermodynamic limits of adsorption heat pumps: A facile method of comparing adsorption pairs
,”
Appl. Therm. Eng.
160
,
113906
(
2019
).
70.
M. H.
Bagheri
and
S. N.
Schiffres
, “
Ideal adsorption isotherm behavior for cooling applications
,”
Langmuir
34
(
5
),
1908
1915
(
2018
).

Supplementary Material

You do not currently have access to this content.