The present work shows that the free energy landscape associated with alanine dipeptide isomerization can be effectively represented by specific interatomic distances without explicit reference to dihedral angles. Conventionally, two stable states of alanine dipeptide in vacuum, i.e., C7eq (β-sheet structure) and C7ax (left handed α-helix structure), have been primarily characterized using the main chain dihedral angles, φ (C–N–Cα–C) and ψ (N–Cα–C–N). However, our recent deep learning combined with the “Explainable AI” (XAI) framework has shown that the transition state can be adequately captured by a free energy landscape using φ and θ (O–C–N–Cα) [Kikutsuji et al., J. Chem. Phys. 156, 154108 (2022)]. In the perspective of extending these insights to other collective variables, a more detailed characterization of the transition state is required. In this work, we employ interatomic distances and bond angles as input variables for deep learning rather than the conventional and more elaborate dihedral angles. Our approach utilizes deep learning to investigate whether changes in the main chain dihedral angle can be expressed in terms of interatomic distances and bond angles. Furthermore, by incorporating XAI into our predictive analysis, we quantified the importance of each input variable and succeeded in clarifying the specific interatomic distance that affects the transition state. The results indicate that constructing a free energy landscape based on the identified interatomic distance can clearly distinguish between the two stable states and provide a comprehensive explanation for the energy barrier crossing.

1.
D. M.
Zuckerman
,
Statistical Physics of Biomolecules: An Introduction
(
CRC Press
,
Boca Raton, FL
,
2010
).
2.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Amsterdam
,
2017
).
3.
G. N.
Ramachandran
and
V.
Sasisekharan
, “
Conformation of polypeptides and proteins
,”
Adv. Protein Chem.
23
,
283
437
(
1968
).
4.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
, “
Reaction coordinates of biomolecular isomerization
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
5877
5882
(
2000
).
5.
R.
Du
,
V. S.
Pande
,
A. Y.
Grosberg
,
T.
Tanaka
, and
E. S.
Shakhnovich
, “
On the transition coordinate for protein folding
,”
J. Chem. Phys.
108
,
334
350
(
1998
).
6.
P. L.
Geissler
,
C.
Dellago
, and
D.
Chandler
, “
Kinetic pathways of ion pair dissociation in water
,”
J. Phys. Chem. B
103
,
3706
3710
(
1999
).
7.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
TRANSITION PATH SAMPLING: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
8.
G.
Hummer
, “
From transition paths to transition states and rate coefficients
,”
J. Chem. Phys.
120
,
516
523
(
2004
).
9.
R. B.
Best
and
G.
Hummer
, “
Reaction coordinates and rates from transition paths
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
6737
(
2005
).
10.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes
,”
Chem. Phys. Lett.
413
,
242
247
(
2005
).
11.
B.
Peters
, “
Using the histogram test to quantify reaction coordinate error
,”
J. Chem. Phys.
125
,
241101
(
2006
).
12.
B.
Peters
and
B. L.
Trout
, “
Obtaining reaction coordinates by likelihood maximization
,”
J. Chem. Phys.
125
,
054108
(
2006
).
13.
B.
Peters
,
G. T.
Beckham
, and
B. L.
Trout
, “
Extensions to the likelihood maximization approach for finding reaction coordinates
,”
J. Chem. Phys.
127
,
034109
(
2007
).
14.
B.
Peters
, “
p(TP|q) peak maximization: Necessary but not sufficient for reaction coordinate accuracy
,”
Chem. Phys. Lett.
494
,
100
103
(
2010
).
15.
B.
Peters
, “
Reaction coordinates and mechanistic hypothesis tests
,”
Annu. Rev. Phys. Chem.
67
,
669
690
(
2016
).
16.
H.
Jung
,
K.-i.
Okazaki
, and
G.
Hummer
, “
Transition path sampling of rare events by shooting from the top
,”
J. Chem. Phys.
147
,
152716
(
2017
).
17.
M. F.
Hagan
,
A. R.
Dinner
,
D.
Chandler
, and
A. K.
Chakraborty
, “
Atomistic understanding of kinetic pathways for single base-pair binding and unbinding in DNA
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
13922
13927
(
2003
).
18.
A. C.
Pan
and
D.
Chandler
, “
Dynamics of nucleation in the Ising model
,”
J. Phys. Chem. B
108
,
19681
19686
(
2004
).
19.
Y. M.
Rhee
and
V. S.
Pande
, “
One-dimensional reaction coordinate and the corresponding potential of mean force from commitment probability distribution
,”
J. Phys. Chem. B
109
,
6780
6786
(
2005
).
20.
A.
Berezhkovskii
and
A.
Szabo
, “
One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions
,”
J. Chem. Phys.
122
,
014503
(
2005
).
21.
D.
Moroni
,
P. R.
ten Wolde
, and
P. G.
Bolhuis
, “
Interplay between structure and size in a critical crystal nucleus
,”
Phys. Rev. Lett.
94
,
235703
(
2005
).
22.
D.
Branduardi
,
F. L.
Gervasio
, and
M.
Parrinello
, “
From A to B in free energy space
,”
J. Chem. Phys.
126
,
054103
(
2007
).
23.
S. L.
Quaytman
and
S. D.
Schwartz
, “
Reaction coordinate of an enzymatic reaction revealed by transition path sampling
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
12253
12258
(
2007
).
24.
G. T.
Beckham
,
B.
Peters
,
C.
Starbuck
,
N.
Variankaval
, and
B. L.
Trout
, “
Surface-mediated nucleation in the solid-state polymorph transformation of terephthalic acid
,”
J. Am. Chem. Soc.
129
,
4714
4723
(
2007
).
25.
B.
Peters
,
N. E. R.
Zimmermann
,
G. T.
Beckham
,
J. W.
Tester
, and
B. L.
Trout
, “
Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism
,”
J. Am. Chem. Soc.
130
,
17342
17350
(
2008
).
26.
G. T.
Beckham
,
B.
Peters
, and
B. L.
Trout
, “
Evidence for a size dependent nucleation mechanism in solid state polymorph transformations
,”
J. Phys. Chem. B
112
,
7460
7466
(
2008
).
27.
D.
Antoniou
and
S. D.
Schwartz
, “
The stochastic separatrix and the reaction coordinate for complex systems
,”
J. Chem. Phys.
130
,
151103
(
2009
).
28.
L.
Xi
,
M.
Shah
, and
B. L.
Trout
, “
Hopping of water in a glassy polymer studied via transition path sampling and likelihood maximization
,”
J. Phys. Chem. B
117
,
3634
3647
(
2013
).
29.
S.
Jungblut
,
A.
Singraber
, and
C.
Dellago
, “
Optimising reaction coordinates for crystallisation by tuning the crystallinity definition
,”
Mol. Phys.
111
,
3527
3533
(
2013
).
30.
B. C.
Barnes
,
B. C.
Knott
,
G. T.
Beckham
,
D. T.
Wu
, and
A. K.
Sum
, “
Reaction coordinate of incipient methane clathrate hydrate nucleation
,”
J. Phys. Chem. B
118
,
13236
13243
(
2014
).
31.
R. G.
Mullen
,
J.-E.
Shea
, and
B.
Peters
, “
Transmission coefficients, committors, and solvent coordinates in ion-pair dissociation
,”
J. Chem. Theory Comput.
10
,
659
667
(
2014
).
32.
R. G.
Mullen
,
J.-E.
Shea
, and
B.
Peters
, “
Easy transition path sampling methods: Flexible-length aimless shooting and permutation shooting
,”
J. Chem. Theory Comput.
11
,
2421
2428
(
2015
).
33.
L.
Lupi
,
B.
Peters
, and
V.
Molinero
, “
Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism
,”
J. Chem. Phys.
145
,
211910
(
2016
).
34.
M.
Ernst
,
S.
Wolf
, and
G.
Stock
, “
Identification and validation of reaction coordinates describing protein functional motion: Hierarchical dynamics of T4 lysozyme
,”
J. Chem. Theory Comput.
13
,
5076
5088
(
2017
).
35.
G.
Díaz Leines
and
J.
Rogal
, “
Maximum likelihood analysis of reaction coordinates during solidification in Ni
,”
J. Phys. Chem. B
122
,
10934
10942
(
2018
).
36.
M. N.
Joswiak
,
M. F.
Doherty
, and
B.
Peters
, “
Ion dissolution mechanism and kinetics at kink sites on NaCl surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
656
661
(
2018
).
37.
K.-i.
Okazaki
,
D.
Wöhlert
,
J.
Warnau
,
H.
Jung
,
Ö.
Yildiz
,
W.
Kühlbrandt
, and
G.
Hummer
, “
Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting
,”
Nat. Commun.
10
,
1742
(
2019
).
38.
T.
Mori
and
S.
Saito
, “
Dissecting the dynamics during enzyme catalysis: A case study of Pin1 peptidyl-prolyl isomerase
,”
J. Chem. Theory Comput.
16
,
3396
3407
(
2020
).
39.
N.
Schwierz
, “
Kinetic pathways of water exchange in the first hydration shell of magnesium
,”
J. Chem. Phys.
152
,
224106
(
2020
).
40.
R. L.
Silveira
,
B. C.
Knott
,
C. S.
Pereira
,
M. F.
Crowley
,
M. S.
Skaf
, and
G. T.
Beckham
, “
Transition path sampling study of the feruloyl esterase mechanism
,”
J. Phys. Chem. B
125
,
2018
2030
(
2021
).
41.
F.
Sittel
and
G.
Stock
, “
Robust density-based clustering to identify metastable conformational states of proteins
,”
J. Chem. Theory Comput.
12
,
2426
2435
(
2016
).
42.
M. M.
Sultan
and
V. S.
Pande
, “
Automated design of collective variables using supervised machine learning
,”
J. Chem. Phys.
149
,
094106
(
2018
).
43.
C.
Wehmeyer
and
F.
Noé
, “
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
,”
J. Chem. Phys.
148
,
241703
(
2018
).
44.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
, “
VAMPnets for deep learning of molecular kinetics
,”
Nat. Commun.
9
,
5
(
2018
).
45.
A.
Bittracher
,
R.
Banisch
, and
C.
Schütte
, “
Data-driven computation of molecular reaction coordinates
,”
J. Chem. Phys.
149
,
154103
(
2018
).
46.
W.
Chen
and
A. L.
Ferguson
, “
Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration
,”
J. Comput. Chem.
39
,
2079
2102
(
2018
).
47.
J. M. L.
Ribeiro
,
P.
Bravo
,
Y.
Wang
, and
P.
Tiwary
, “
Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)
,”
J. Chem. Phys.
149
,
072301
(
2018
).
48.
J.
Rogal
,
E.
Schneider
, and
M. E.
Tuckerman
, “
Neural-network-based path collective variables for enhanced sampling of phase transformations
,”
Phys. Rev. Lett.
123
,
245701
(
2019
).
49.
Y.
Wang
,
J. M.
Lamim Ribeiro
, and
P.
Tiwary
, “
Machine learning approaches for analyzing and enhancing molecular dynamics simulations
,”
Curr. Opin. Struct. Biol.
61
,
139
145
(
2020
).
50.
L.
Bonati
,
V.
Rizzi
, and
M.
Parrinello
, “
Data-driven collective variables for enhanced sampling
,”
J. Phys. Chem. Lett.
11
,
2998
3004
(
2020
).
51.
H.
Sidky
,
W.
Chen
, and
A. L.
Ferguson
, “
Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation
,”
Mol. Phys.
118
,
e1737742
(
2020
).
52.
D.
Wang
and
P.
Tiwary
, “
State predictive information bottleneck
,”
J. Chem. Phys.
154
,
134111
(
2021
).
53.
J.
Zhang
,
Y.-K.
Lei
,
Z.
Zhang
,
X.
Han
,
M.
Li
,
L.
Yang
,
Y. I.
Yang
, and
Y. Q.
Gao
, “
Deep reinforcement learning of transition states
,”
Phys. Chem. Chem. Phys.
23
,
6888
6895
(
2021
).
54.
M.
Frassek
,
A.
Arjun
, and
P. G.
Bolhuis
, “
An extended autoencoder model for reaction coordinate discovery in rare event molecular dynamics datasets
,”
J. Chem. Phys.
155
,
064103
(
2021
).
55.
F.
Hooft
,
A.
Pérez de Alba Ortíz
, and
B.
Ensing
, “
Discovering collective variables of molecular transitions via genetic algorithms and neural networks
,”
J. Chem. Theory Comput.
17
,
2294
2306
(
2021
).
56.
L.
Bonati
,
G.
Piccini
, and
M.
Parrinello
, “
Deep learning the slow modes for rare events sampling
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2113533118
(
2021
).
57.
M.
Chen
, “
Collective variable-based enhanced sampling and machine learning
,”
Eur. Phys. J. B
94
,
211
(
2021
).
58.
Z.
Belkacemi
,
P.
Gkeka
,
T.
Lelièvre
, and
G.
Stoltz
, “
Chasing collective variables using autoencoders and biased trajectories
,”
J. Chem. Theory Comput.
18
,
59
78
(
2021
).
59.
J.
Neumann
and
N.
Schwierz
, “
Artificial intelligence resolves kinetic pathways of magnesium binding to RNA
,”
J. Chem. Theory Comput.
18
,
1202
1212
(
2022
).
60.
D.
Ray
,
E.
Trizio
, and
M.
Parrinello
, “
Deep learning collective variables from transition path ensemble
,”
J. Chem. Phys.
158
,
204102
(
2023
).
61.
H.
Jung
,
R.
Covino
,
A.
Arjun
,
C.
Leitold
,
C.
Dellago
,
P. G.
Bolhuis
, and
G.
Hummer
, “
Machine-guided path sampling to discover mechanisms of molecular self-organization
,”
Nat. Comput. Sci.
3
,
334
345
(
2023
).
62.
L.
Bonati
,
E.
Trizio
,
A.
Rizzi
, and
M.
Parrinello
, “
A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar
,”
J. Chem. Phys.
159
,
014801
(
2023
).
63.
A. N.
Singh
and
D. T.
Limmer
, “
Variational deep learning of equilibrium transition path ensembles
,”
J. Chem. Phys.
159
,
024124
(
2023
).
64.
S.
Liang
,
A. N.
Singh
,
Y.
Zhu
,
D. T.
Limmer
, and
C.
Yang
, “
Probing reaction channels via reinforcement learning
,”
Mach. Learn.: Sci. Technol.
4
,
045003
(
2023
).
65.
G.
Lazzeri
,
H.
Jung
,
P. G.
Bolhuis
, and
R.
Covino
, “
Molecular free energies, rates, and mechanisms from data-efficient path sampling simulations
,”
J. Chem. Theory Comput.
19
,
9060
9076
(
2023
).
66.
A.
Ma
and
A. R.
Dinner
, “
Automatic method for identifying reaction coordinates in complex systems
,”
J. Phys. Chem. B
109
,
6769
6779
(
2005
).
67.
Y.
Mori
,
K.-i.
Okazaki
,
T.
Mori
,
K.
Kim
, and
N.
Matubayasi
, “
Learning reaction coordinates via cross-entropy minimization: Application to alanine dipeptide
,”
J. Chem. Phys.
153
,
054115
(
2020
).
68.
T.
Kikutsuji
,
Y.
Mori
,
K.-i.
Okazaki
,
T.
Mori
,
K.
Kim
, and
N.
Matubayasi
, “
Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI)
,”
J. Chem. Phys.
156
,
154108
(
2022
).
69.
F.
Manuchehrfar
,
H.
Li
,
W.
Tian
,
A.
Ma
, and
J.
Liang
, “
Exact topology of the dynamic probability surface of an activated process by persistent homology
,”
J. Phys. Chem. B
125
,
4667
4680
(
2021
).
70.
N.
Naleem
,
C. R. A.
Abreu
,
K.
Warmuz
,
M.
Tong
,
S.
Kirmizialtin
, and
M. E.
Tuckerman
, “
An exploration of machine learning models for the determination of reaction coordinates associated with conformational transitions
,”
J. Chem. Phys.
159
,
034102
(
2023
).
71.
M. T.
Ribeiro
,
S.
Singh
, and
C.
Guestrin
, “‘
Why should I trust you?’: Explaining the predictions of any classifier
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
Association for Computing Machinery
,
San Francisco, CA
,
2016
), pp.
1135
1144
.
72.
S. M.
Lundberg
and
S.-I.
Lee
, “
A unified approach to interpreting model predictions
,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems
(
Curran Associates Inc., Red Hook, NY
,
2017
), pp.
4768
4777
.

Supplementary Material

You do not currently have access to this content.