In this work, the effect of the range of dispersive interactions in determining the three-phase coexistence line of the CO2 and CH4 hydrates has been studied. In particular, the temperature (T3) at which solid hydrate, water, and liquid CO2/gas CH4 coexist has been determined through molecular dynamics simulations using different cutoff values (from 0.9 to 1.6 nm) for dispersive interactions. The T3 of both hydrates has been determined using the direct coexistence simulation technique. Following this method, the three phases in equilibrium are put together in the same simulation box, the pressure is fixed, and simulations are performed at different temperatures T. If the hydrate melts, then T > T3. Conversely, if the hydrate grows, then T < T3. The effect of the cutoff distance on the dissociation temperature has been analyzed at three different pressures for CO2 hydrate: 100, 400, and 1000 bar. Then, we have changed the guest and studied the effect of the cutoff distance on the dissociation temperature of the CH4 hydrate at 400 bar. Moreover, the effect of long-range corrections for dispersive interactions has been analyzed by running simulations with homo- and inhomogeneous corrections and a cutoff value of 0.9 nm. The results obtained in this work highlight that the cutoff distance for the dispersive interactions affects the stability conditions of these hydrates. This effect is enhanced when the pressure is decreased, displacing the T3 about 2–4 K depending on the system and the pressure.

1.
E. D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
New York
,
2008
).
2.
B. C.
Barnes
and
A. K.
Sum
, “
Advances in molecular simulations of clathrate hydrates
,”
Curr. Opin. Chem. Eng.
2
,
184
190
(
2013
).
3.
K. A.
Kvenvolden
, “
Methane hydrate—A major reservoir of carbon in the shallow geosphere?
,”
Chem. Geol.
71
,
41
51
(
1988
).
4.
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
, “
State of the art: Natural gas hydrates as a natural resource
,”
J. Nat. Gas Sci. Eng.
8
,
132
138
(
2012
).
5.
IEA
, “
World Energy Outlook 2022
,” https://www.iea.org/reports/world-energy-outlook-2022 (
2022
).
6.
M.
Yang
,
Y.
Song
,
L.
Jiang
,
Y.
Zhao
,
X.
Ruan
,
Y.
Zhang
, and
S.
Wang
, “
Hydrate-based technology for CO2 capture from fossil fuel power plants
,”
Appl. Energy
116
,
26
40
(
2014
).
7.
M.
Ricaurte
,
C.
Dicharry
,
X.
Renaud
, and
J.-P.
Torré
, “
Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation
,”
Fuel
122
,
206
217
(
2014
).
8.
B.
Kvamme
,
A.
Graue
,
T.
Buanes
,
T.
Kuznetsova
, and
G.
Ersland
, “
Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers
,”
Int. J. Greenhouse Gas Control
1
,
236
246
(
2007
).
9.
W. L.
Mao
,
H. K.
Mao
,
A. F.
Goncharov
,
V. V.
Struzhkin
,
Q.
Guo
,
J.
Hu
,
J.
Shu
,
R. J.
Hemley
,
M.
Somayazulu
, and
Y.
Zhao
, “
Hydrogen clusters in clathrate hydrate
,”
Science
297
,
2247
2249
(
2002
).
10.
W. L.
Mao
and
H. K.
Mao
, “
Hydrogen storage in molecular compounds
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
708
710
(
2004
).
11.
H.
Lee
,
J.-w.
Lee
,
D. Y.
Kim
,
J.
Park
,
Y.-T.
Seo
,
H.
Zeng
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Tuning clathrate hydrates for hydrogen storage
,”
Nature
434
,
743
746
(
2005
).
12.
H. P.
Veluswamy
,
R.
Kumar
, and
P.
Linga
, “
Hydrogen storage in clathrate hydrates: Current state of the art and future directions
,”
Appl. Energy
122
,
112
132
(
2014
).
13.
S. Y.
Willow
and
S. S.
Xantheas
, “
Enhancement of hydrogen storage capacity in hydrate lattices
,”
Chem. Phys. Lett.
525–526
,
13
18
(
2012
).
14.
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K. N.
Marsh
, and
E. D.
Sloan
, “
Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate
,”
Science
306
,
469
471
(
2004
).
15.
T. A.
Strobel
,
C. A.
Koh
, and
E. D.
Sloan
, “
Hydrogen storage properties of clathrate hydrate materials
,”
Fluid Phase Equilib.
261
,
382
389
(
2007
).
16.
T.
Sugahara
,
J. C.
Haag
,
P. S.
Prasad
,
A. A.
Warntjes
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
, “
Increasing hydrogen storage capacity using tetrahydrofuran
,”
J. Am. Chem. Soc.
131
,
14616
14617
(
2009
).
17.
A.
Davoodabadi
,
A.
Mahmoudi
, and
H.
Ghasemi
, “
The potential of hydrogen hydrate as a future hydrogen storage medium
,”
iScience
24
,
101907
(
2021
).
18.
Y. H.
Hu
and
E.
Ruckenstein
, “
Clathrate hydrogen hydrate—A promising material for hydrogen storage
,”
Angew. Chem., Int. Ed.
45
,
2011
2013
(
2006
).
19.
S.-P.
Kang
,
H.
Lee
,
C.-S.
Lee
, and
W.-M.
Sung
, “
Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran
,”
Fluid Phase Equilib.
185
,
101
109
(
2001
).
20.
A.
Delahaye
,
L.
Fournaison
,
S.
Marinhas
,
I.
Chatti
et al, “
Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration
,”
Ind. Eng. Chem. Res.
45
,
391
397
(
2006
).
21.
R.
Anderson
,
A.
Chapoy
, and
B.
Tohidi
, “
Phase relations and binary clathrate hydrate formation in the system H2–THF–H2O
,”
Langmuir
23
,
3440
3444
(
2007
).
22.
Y.-J.
Lee
,
T.
Kawamura
,
Y.
Yamamoto
, and
J.-H.
Yoon
, “
Phase equilibrium studies of tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 hydrates
,”
J. Chem. Eng. Data
57
,
3543
3548
(
2012
).
23.
A.
Striolo
,
A.
Phan
, and
M. R.
Walsh
, “
Molecular properties of interfaces relevant for clathrate hydrate agglomeration
,”
Curr. Opin. Chem. Eng.
25
,
57
66
(
2019
).
24.
T.
Bui
,
A.
Phan
,
D.
Monteiro
,
Q.
Lan
,
M.
Ceglio
,
E.
Acosta
,
P.
Krishnamurthy
, and
A.
Striolo
, “
Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management
,”
Langmuir
33
,
2263
2274
(
2017
).
25.
T.
Bui
,
F.
Sicard
,
D.
Monteiro
,
Q.
Lan
,
M.
Ceglio
,
C.
Burress
, and
A.
Striolo
, “
Antiagglomerants affect gas hydrate growth
,”
J. Phys. Chem. Lett.
9
,
3491
3496
(
2018
).
26.
A.
Phan
,
T.
Bui
,
E.
Acosta
,
P.
Krishnamurthy
, and
A.
Striolo
, “
Molecular mechanisms responsible for hydrate anti-agglomerant performance
,”
Phys. Chem. Chem. Phys.
18
,
24859
24871
(
2016
).
27.
P. M.
Naullage
,
A. A.
Bertolazzo
, and
V.
Molinero
, “
How do surfactants control the agglomeration of clathrate hydrates?
,”
ACS Cent. Sci.
5
,
428
439
(
2019
).
28.
P. M.
Naullage
and
V.
Molinero
, “
Slow propagation of ice binding limits the ice-recrystallization inhibition efficiency of PVA and other flexible polymers
,”
J. Am. Chem. Soc.
142
,
4356
4366
(
2020
).
29.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Amorphous precursors in the nucleation of clathrate hydrates
,”
J. Am. Chem. Soc.
132
,
11806
11811
(
2010
).
30.
J.
Lederhos
,
J.
Long
,
A.
Sum
,
R.
Christiansen
, and
E.
Sloan
, Jr.
, “
Effective kinetic inhibitors for natural gas hydrates
,”
Chem. Eng. Sci.
51
,
1221
1229
(
1996
).
31.
R.
Wu
,
Z. M.
Aman
,
E. F.
May
,
K. A.
Kozielski
,
P. G.
Hartley
,
N.
Maeda
, and
A. K.
Sum
, “
Effect of kinetic hydrate inhibitor polyvinylcaprolactam on cyclopentane hydrate cohesion forces and growth
,”
Energy Fuels
28
,
3632
3637
(
2014
).
32.
F.
Wang
,
A. K.
Sum
, and
B.
Liu
, “
Editorial: Recent advances in promoters for gas hydrate formation
,”
Front. Chem.
9
,
708269
(
2021
).
33.
J.-H.
Sa
and
A. K.
Sum
, “
Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications
,”
Appl. Energy
251
,
113352
(
2019
).
34.
J.-P.
Torré
,
M.
Ricaurte
,
C.
Dicharry
, and
D.
Broseta
, “
CO2 enclathration in the presence of water-soluble hydrate promoters: Hydrate phase equilibria and kinetic studies in quiescent conditions
,”
Chem. Eng. Sci.
82
,
1
13
(
2012
).
35.
J.
Ripmeester
and
C.
Ratcliffe
, “
The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest
,”
Energy Fuels
12
,
197
(
1998
).
36.
T.
Ikeda
,
O.
Yamamuro
,
T.
Matsuo
,
K.
Mori
,
S.
Torii
,
T.
Kamiyama
,
F.
Izumi
,
S.
Ikeda
, and
S.
Mae
, “
Neutron diffraction study of carbon dioxide clathrate hydrate
,”
J. Phys. Chem. Solids
60
,
1527
(
1999
).
37.
K.
Udachin
,
C.
Ratcliffe
, and
J.
Ripmeester
, “
Structure, composition, and thermal expansion of CO2 hydrate from single crystal x-ray diffraction measurements
,”
J. Phys. Chem. B
105
,
4200
(
2001
).
38.
S.
Nakano
,
M.
Moritoki
, and
K.
Ohgaki
, “
High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system
,”
J. Chem. Eng. Data
43
,
807
810
(
1998
).
39.
R.
Henning
,
A.
Schultz
,
V.
Thieu
, and
Y.
Halpern
, “
Neutron diffraction studies of CO2 clathrate hydrate: Formation from deuterated ice
,”
J. Phys. Chem. A
104
,
5066
(
2000
).
40.
D. H.
Smith
,
K.
Seshadri
,
T.
Uchida
, and
J. W.
Wilder
, “
Thermodynamics of methane, propane, and carbon dioxide hydrates in porous glass
,”
AIChE J.
50
,
1589
1598
(
2004
).
41.
S.-P.
Kang
,
J. W.
Lee
, and
H.-J.
Ryu
, “
Phase behavior of methane and carbon dioxide hydrates in meso- and macro-sized porous media
,”
Fluid Phase Equilib.
274
,
68
72
(
2008
).
42.
J. C.
Platteeuw
and
J. H.
van der Waals
, “
Thermodynamic properties of gas hydrates
,”
Mol. Phys.
1
,
91
96
(
1958
).
43.
J. C.
Platteeuw
and
J. H.
van der Waals
, “
Thermodynamic properties of gas hydrates II: Phase equilibria in the system H2S–C3H3–H2O at −3 °C
,”
Recl. Trav. Chim. Pays-Bas
78
,
126
133
(
1959
).
44.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
45.
M.
Pérez-Rodríguez
,
A.
Vidal-Vidal
,
J.
Míguez
,
F. J.
Blas
,
J.-P.
Torré
, and
M. M.
Piñeiro
, “
Computational study of the interplay between intermolecular interactions and CO2 orientations in type I hydrates
,”
Phys. Chem. Chem. Phys.
19
,
3384
3393
(
2017
).
46.
A. M.
Fernàndez-Fernàndez
,
M.
Pérez-Rodríguez
,
A.
Comesana
, and
M. M.
Pineiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
433
(
2019
).
47.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
8570
(
2022
).
48.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
49.
M. M.
Conde
and
C.
Vega
, “
Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations
,”
J. Chem. Phys.
138
,
056101
(
2013
).
50.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
51.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
52.
J.
Algaba
,
M. J.
Torrejón
, and
F. J.
Blas
, “
Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation
,”
J. Chem. Phys.
159
,
224707
(
2023
).
53.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
, 2nd ed. (
Academic
,
San Diego
,
2002
).
54.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford
,
Claredon
,
1987
).
55.
S.
Blazquez
,
J.
Algaba
,
J. M.
Míguez
,
C.
Vega
,
F. J.
Blas
, and
M. M.
Conde
, “
Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate
,”
J. Chem. Phys.
(submitted
2023
).
56.
J.
Algaba
,
S.
Blazquez
,
E.
Feria
,
J. M.
Míguez
,
M. M.
Conde
, and
F. J.
Blas
, “
Three-phase equilibria of hydrates from computer simulation. II. Finite-size effects in the carbon dioxide hydrate
,”
J. Chem. Phys.
160
,
164722
(
2024
) (submitted).
57.
J.
Algaba
,
I. M.
Zerón
,
J. M.
Míguez
,
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
C.
Vega
, and
F. J.
Blas
, “
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
,”
J. Chem. Phys.
158
,
054505
(
2023
).
58.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
59.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
60.
L.
Lundberg
and
O.
Edholm
, “
Dispersion corrections to the surface tension at planar surfaces
,”
J. Chem. Theory Comput.
12
,
4025
4032
(
2016
).
61.
M. A.
Cuendet
and
W. F.
van Gunsteren
, “
On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm
,”
J. Chem. Phys.
127
,
184102
(
2007
).
62.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
63.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
64.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
E. G.
Noya
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
,
114505
(
2023
).
65.
S.
Blazquez
,
I.
Zeron
,
M.
Conde
,
J.
Abascal
, and
C.
Vega
, “
Scaled charges at work: Salting out and interfacial tension of methane with electrolyte solutions from computer simulations
,”
Fluid Phase Equilib.
513
,
112548
(
2020
).
66.
P.
Montero de Hijes
,
J.
R Espinosa
,
C.
Vega
, and
C.
Dellago
, “
Minimum in the pressure dependence of the interfacial free energy between ice Ih and water
,”
J. Chem. Phys.
158
,
124503
(
2023
).
67.
S.
Blazquez
,
M.
Conde
, and
C.
Vega
, “
Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water
,”
J. Chem. Phys.
158
,
054505
(
2023
).
68.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
69.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
70.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
71.
B.
Guillot
and
Y.
Guissani
, “
A computer simulation study of the temperature dependence of the hydrophobic hydration
,”
J. Chem. Phys.
99
,
8075
8094
(
1993
).
72.
D.
Paschek
, “
Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models
,”
J. Chem. Phys.
120
,
6674
6690
(
2004
).
73.
E. M.
Freer
,
M.
Sami Selim
, and
E.
Dendy Sloan
, “
Methane hydrate film growth kinetics
,”
Fluid Phase Equilib.
185
,
65
75
(
2001
).
74.
A.
Touil
,
D.
Broseta
, and
A.
Desmedt
, “
Gas hydrate crystallization in thin glass capillaries: Roles of supercooling and wettability
,”
Langmuir
35
,
12569
12581
(
2019
).
75.
T.
Uchida
,
T.
Ebinuma
,
J.
Kawabata
, and
H.
Narita
, “
Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide
,”
J. Cryst. Growth
204
,
348
356
(
1999
).
76.
J. D.
Wells
,
W.
Chen
,
R. L.
Hartman
, and
C. A.
Koh
, “
Carbon dioxide hydrate in a microfluidic device: Phase boundary and crystallization kinetics measurements with micro-Raman spectroscopy
,”
J. Chem. Phys.
154
,
114710
(
2021
).
77.
H. D.
Nagashima
,
M.
Oshima
, and
Y.
Jin
, “
Film-growth rates of methane hydrate on ice surfaces
,”
J. Cryst. Growth
537
,
125595
(
2020
).
78.
W.
Ou
,
W.
Lu
,
K.
Qu
,
L.
Geng
, and
I.-M.
Chou
, “
In situ Raman spectroscopic investigation of flux-controlled crystal growth under high pressure: A case study of carbon dioxide hydrate growth in aqueous solution
,”
Int. J. Heat Mass Transfer
101
,
834
843
(
2016
).
79.
D.
Daniel-David
,
F.
Guerton
,
C.
Dicharry
,
J.-P.
Torré
, and
D.
Broseta
, “
Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants
,”
Chem. Eng. Sci.
132
,
118
127
(
2015
).
80.
S.
Blazquez
,
M. M.
Conde
,
C.
Vega
, and
E.
Sanz
, “
Growth rate of CO2 and CH4 hydrates by means of molecular dynamics simulations
,”
J. Chem. Phys.
159
,
064503
(
2023
).
81.
Y.-T.
Tung
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
The growth of structure I methane hydrate from molecular dynamics simulations
,”
J. Phys. Chem. B
114
,
10804
10813
(
2010
).
You do not currently have access to this content.