In this work, the effects of finite size on the determination of the three-phase coexistence temperature (T3) of the carbon dioxide (CO2) hydrate have been studied by molecular dynamic simulations and using the direct coexistence technique. According to this technique, the three phases involved (hydrate–aqueous solution–liquid CO2) are placed together in the same simulation box. By varying the number of molecules of each phase, it is possible to analyze the effect of simulation size and stoichiometry on the T3 determination. In this work, we have determined the T3 value at 8 different pressures (from 100 to 6000 bar) and using 6 different simulation boxes with different numbers of molecules and sizes. In two of these configurations, the ratio of the number of water and CO2 molecules in the aqueous solution and the liquid CO2 phase is the same as in the hydrate (stoichiometric configuration). In both stoichiometric configurations, the formation of a liquid drop of CO2 in the aqueous phase is observed. This drop, which has a cylindrical geometry, increases the amount of CO2 available in the aqueous solution and can in some cases lead to the crystallization of the hydrate at temperatures above T3, overestimating the T3 value obtained from direct coexistence simulations. The simulation results obtained for the CO2 hydrate confirm the sensitivity of T3 depending on the size and composition of the system, explaining the discrepancies observed in the original work by Míguez et al. [J. Chem Phys. 142, 124505 (2015)]. Non-stoichiometric configurations with larger unit cells show a convergence of T3 values, suggesting that finite-size effects for these system sizes, regardless of drop formation, can be safely neglected. The results obtained in this work highlight that the choice of a correct initial configuration is essential to accurately estimate the three-phase coexistence temperature of hydrates by direct coexistence simulations.

1.
E. D.
Sloan
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
359
(
2003
).
2.
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
, “
State of the art: Natural gas hydrates as a natural resource
,”
J. Nat. Gas Sci. Eng.
8
,
132
138
(
2012
).
3.
E. D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
New York
,
2008
).
4.
J. A.
Ripmeester
and
S.
Alavi
,
Clathrate Hydrates: Molecular Science and Characterization
(
Wiley VCH
,
Weinheim Germany
,
2022
).
5.
H.
Barthélémy
,
M.
Weber
, and
F.
Barbier
, “
Hydrogen storage: Recent improvements and industrial perspectives
,”
Int. J. Hydrogen Energy
42
,
7254
7262
(
2017
).
6.
S.
Chen
,
Y.
Wang
,
X.
Lang
,
S.
Fan
, and
G.
Li
, “
Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure
,”
Energy
268
,
126638
(
2023
).
7.
Y.
Zhang
,
G.
Bhattacharjee
,
J.
Zheng
, and
P.
Linga
, “
Hydrogen storage as clathrate hydrates in the presence of 1,3-dioxolane as a dual-function promoter
,”
Chem. Eng. J.
427
,
131771
(
2022
).
8.
K. A.
Kvenvolden
, “
Methane hydrate–A major reservoir of carbon in the shallow geosphere
,”
Chem. Geol.
71
,
41
(
1988
).
9.
G. J.
MacDonald
, “
The future of methane as an energy resource
,”
Annu. Rev. Energy
15
,
53
(
1990
).
10.
C.
Bourry
,
J. L.
Charlou
,
J. P.
Donval
,
M.
Brunelli
,
C.
Focsa
, and
B.
Chazallon
, “
X‐ray synchrotron diffraction study of natural gas hydrates from African margin
,”
Geophys. Res. Lett.
34
,
L22303
, (
2007
).
11.
H.
Lu
,
Y.
Seo
,
J.
Lee
,
I.
Moudrakovski
,
J. A.
Ripmeester
,
N. R.
Chapman
,
R. B.
Coffin
,
G.
Gardner
, and
J.
Pohlman
, “
Complex gas hydrate from the cascadia margin
,”
Nature
445
,
303
(
2007
).
12.
B.
Lal
and
O.
Nashed
,
Chemical Additives for Gas Hydrates
(
Springer
,
2020
).
13.
M. M.
Ghiasi
,
A. H.
Mohammadi
, and
S.
Zendehboudi
, “
Modeling stability conditions of methane clathrate hydrate in ionic liquid aqueous solutions
,”
J. Mol. Liq.
325
,
114804
(
2021
).
14.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
, “
On the occurrence of clathrate hydrates in extreme conditions: Dissociation pressures and occupancies at cryogenic temperatures with application to planetary systems
,”
Planet. Sci. J.
1
,
80
(
2020
).
15.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Spontaneous NaCl-doped ice at seawater conditions: Focus on the mechanisms of ion inclusion
,”
Phys. Chem. Chem. Phys.
19
,
9566
(
2017
).
16.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Spontaneous NaCl-doped ices Ih, Ic, III, V and VI. understanding the mechanism of ion inclusion and its dependence on the crystalline structure of ice
,”
Phys. Chem. Chem. Phys.
23
,
22897
22911
(
2021
).
17.
O.
Prieto-Ballesteros
,
J. S.
Kargel
,
M.
Fernández-Sampedro
,
F.
Selsis
,
E. S.
Martínez
, and
D. L.
Hogenboom
, “
Evaluation of the possible presence of clathrate hydrates in europa’s icy shell or seafloor
,”
Icarus
177
,
491
505
(
2005
).
18.
J. S.
Kargel
,
J. Z.
Kaye
,
J. W.
Head
,
G. M.
Marion
,
R.
Sassen
,
J. K.
Crowley
,
O. P.
Ballesteros
,
S. A.
Grant
, and
D. L.
Hogenboom
, “
Europa’s crust and ocean: Origin, composition, and the prospects for life
,”
Icarus
148
,
226
265
(
2000
).
19.
O.
Prieto-Ballesteros
,
J. S.
Kargel
,
A. G.
Fairén
,
D. C.
Fernández-Remolar
,
J. M.
Dohm
, and
R.
Amils
, “
Interglacial clathrate destabilization on Mars: Possible contributing source of its atmospheric methane
,”
Geology
34
,
149
152
(
2006
).
20.
E.
Pettinelli
,
B.
Cosciotti
,
F.
Di Paolo
,
S. E.
Lauro
,
E.
Mattei
,
R.
Orosei
, and
G.
Vannaroni
, “
Dielectric properties of jovian satellite ice analogs for subsurface radar exploration: A review
,”
Rev. Geophys.
53
,
593
641
, (
2015
).
21.
S. C.
Peter
, “
Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis
,”
ACS Energy Lett.
3
,
1557
1561
(
2018
).
22.
K. O.
Yoro
and
M. O.
Daramola
, “
CO2 emission sources, greenhouse gases, and the global warming effect
,” in
Advances in Carbon Capture
(
Elsevier
,
2020
), pp.
3
28
.
23.
D. M.
D’Alessandro
,
B.
Smit
, and
J. R.
Long
, “
Carbon dioxide capture: Prospects for new materials
,”
Angew. Chem., Int. Ed.
49
,
6058
6082
(
2010
).
24.
W.
Gao
,
S.
Liang
,
R.
Wang
,
Q.
Jiang
,
Y.
Zhang
,
Q.
Zheng
,
B.
Xie
,
C. Y.
Toe
,
X.
Zhu
,
J.
Wang
et al, “
Industrial carbon dioxide capture and utilization: State of the art and future challenges
,”
Chem. Soc. Rev.
49
,
8584
8686
(
2020
).
25.
X.
Wang
,
F.
Zhang
, and
W.
Lipiński
, “
Research progress and challenges in hydrate-based carbon dioxide capture applications
,”
Appl. Energy
269
,
114928
(
2020
).
26.
N. N.
Nguyen
,
V. T.
La
,
C. D.
Huynh
, and
A. V.
Nguyen
, “
Technical and economic perspectives of hydrate-based carbon dioxide capture
,”
Appl. Energy
307
,
118237
(
2022
).
27.
J.
Zheng
,
Z. R.
Chong
,
M. F.
Qureshi
, and
P.
Linga
, “
Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization
,”
Energy Fuels
34
,
10529
10546
(
2020
).
28.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
29.
Y.-T.
Tung
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
Growth of structure i carbon dioxide hydrate from molecular dynamics simulations
,”
J. Phys. Chem. C
115
,
7504
7515
(
2011
).
30.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Phys. Chem.
120
,
9665
9678
(
2004
).
31.
J. G.
Harris
and
K. H.
Yung
, “
Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model
,”
J. Phys. Chem.
99
,
12021
12024
(
1995
).
32.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
33.
M. H.
Waage
,
T. J. H.
Vlugt
, and
S.
Kjelstrup
, “
Phase diagram of methane and carbon dioxide hydrates computed by Monte Carlo simulations
,”
J. Phys. Chem. B
121
,
7336
7350
(
2017
).
34.
L.
Jiao
,
Z.
Wang
,
J.
Li
,
P.
Zhao
, and
R.
Wan
, “
Stability and dissociation studies of CO2 hydrate under different systems using molecular dynamic simulations
,”
J. Mol. Liq.
338
,
116788
(
2021
).
35.
X.
Hao
,
C.
Li
,
Q.
Meng
,
J.
Sun
,
L.
Huang
,
Q.
Bu
, and
C.
Li
, “
Molecular dynamics simulation of the three-phase equilibrium line of CO2 hydrate with OPC water model
,”
ACS Omega
8
,
39847
39854
(
2023
).
36.
N.
Qiu
,
X.
Bai
,
N.
Sun
,
X.
Yu
,
L.
Yang
,
Y.
Li
,
M.
Yang
,
Q.
Huang
, and
S.
Du
, “
Grand canonical Monte Carlo simulations on phase equilibria of methane, carbon dioxide, and their mixture hydrates
,”
J. Phys. Chem. B
122
,
9724
9737
(
2018
).
37.
S.
El Meragawi
,
N. I.
Diamantonis
,
I. N.
Tsimpanogiannis
, and
I. G.
Economou
, “
Hydrate—fluid phase equilibria modeling using PC-SAFT and Peng–Robinson equations of state
,”
Fluid Phase Equilib.
413
,
209
219
(
2016
).
38.
A.
Jäger
,
V.
Vinš
,
J.
Gernert
,
R.
Span
, and
J.
Hrubý
, “
Phase equilibria with hydrate formation in H2O + CO2 mixtures modeled with reference equations of state
,”
Fluid Phase Equilib.
338
,
100
113
(
2013
).
39.
L.
Sun
,
H.
Zhao
,
S. B.
Kiselev
, and
C.
McCabe
, “
Application of SAFT–VRX to binary phase behaviour: Alkanes
,”
Fluid Phase Equilib.
228-229
,
275
282
(
2005
).
40.
S.
Blazquez
,
M.
M Conde
,
C.
Vega
, and
E.
Sanz
, “
Growth rate of CO2 and CH4 hydrates by means of molecular dynamics simulations
,”
J. Chem. Phys.
159
,
064503
(
2023
).
41.
H.
Wang
,
Y.
Lu
,
X.
Zhang
,
Q.
Fan
,
Q.
Li
,
L.
Zhang
,
J.
Zhao
,
L.
Yang
, and
Y.
Song
, “
Molecular dynamics of carbon sequestration via forming CO2 hydrate in a marine environment
,”
Energy Fuels
37
,
9309
(
2023
).
42.
A. M.
Fernández-Fernández
,
M.
Pérez-Rodríguez
,
A.
Comesaña
, and
M. M.
Piñeiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
433
(
2019
).
43.
S.
Blazquez
,
C.
Vega
, and
M. M.
Conde
, “
Three phase equilibria of the methane hydrate in nacl solutions: A simulation study
,”
J. Mol. Liq.
383
,
122031
(
2023
).
44.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
E. G.
Noya
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
,
114505
(
2023
).
45.
J.
Algaba
,
I. M.
Zerón
,
J. M.
Míguez
,
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
C.
Vega
, and
F. J.
Blas
, “
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
,”
J. Chem. Phys.
158
,
184703
(
2023
).
46.
A. Z.
Panagiotopoulos
, “
Molecular simulation of phase coexistence: Finite-size effects and determination of critical parameters for two- and three-dimensional Lennard-Jones fluids
,”
Int. J. Thermophys.
15
,
1057
1072
(
1994
).
47.
P.
Orea
,
J.
López-Lemus
, and
J.
Alejandre
, “
Oscillatory surface tension due to finite-size effects
,”
J. Phys. Chem.
123
,
114702
(
2005
).
48.
K.
Binder
and
M.
Müller
, “
Computer simulation of profiles of interfaces between coexisting phases: Do we understand their finite size effects?
,”
Int. J. Mod. Phys. C
11
,
1093
1113
(
2000
).
49.
H. L.
Vörtler
,
K.
Schäfer
, and
W. R.
Smith
, “
Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well Fluids: Finite size effects
,”
J. Phys. Chem. B
112
,
4656
4661
(
2008
).
50.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
51.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
52.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
, “
Simulations of H2O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice
,”
J. Phys. Chem. B
102
,
8641
8653
(
1998
).
53.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
548
(
1933
).
54.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
Gromacs: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
55.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
56.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
57.
M. A.
Cuendet
and
W. F.
van Gunsteren
, “
On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm
,”
J. Chem. Phys.
127
,
184102
(
2007
).
58.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
59.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
60.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
61.
S.
Blazquez
,
J.
Algaba
,
J. M.
Míguez
,
C.
Vega
,
F. J.
Blas
, and
M. M.
Conde
, “
Three-phase equilibria of hydrates from computer simulation. I. Finite- size effects in the methane hydrate
,”
J. Chem. Phys.
160
,
164721
(
2024
) submitted.
62.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
8570
(
2022
).
63.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
64.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
,
21241
21248
(
2011
).
65.
S.
Liang
and
P. G.
Kusalik
, “
Exploring nucleation of H2S hydrates
,”
Chem. Sci.
2
,
1286
1292
(
2011
).
66.
T.
Yagasaki
,
M.
Matsumoto
,
Y.
Andoh
,
S.
Okazaki
, and
H.
Tanaka
, “
Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study
,”
J. Phys. Chem. B
118
,
1900
(
2014
).
67.
B.
Fang
,
O. A.
Moultos
,
T.
,
J.
Sun
,
Z.
Liu
,
F.
Ning
, and
T. J.
Vlugt
, “
Effects of nanobubbles on methane hydrate dissociation: A molecular simulation study
,”
Fuel
345
,
128230
(
2023
).
68.
S. A.
Bagherzadeh
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
,”
J. Chem. Phys.
142
,
214701
(
2015
).
69.
K. W.
Hall
,
Z.
Zhang
, and
P. G.
Kusalik
, “
Unraveling mixed hydrate formation: Microscopic insights into early stage behavior
,”
J. Phys. Chem. B
120
,
13218
13223
(
2016
).
70.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
, “
Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems
,”
J. Chem. Phys.
125
,
034705
(
2006
).
71.
R. S.
Singh
,
J. C.
Palmer
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water
,”
J. Chem. Phys.
150
,
224503
(
2019
).
72.
P.
Montero de Hijes
and
C.
Vega
, “
On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system
,”
J. Chem. Phys.
156
,
014505
(
2022
).
73.
J.
Algaba
,
S.
Blazquez
,
J. M.
Míguez
,
M. M.
Conde
, and
F. J.
Blas
, “
Three-phase equilibria of hydrates from computer simulation. III. Effect of dispersive interactions in methane and carbon dioxide hydrates
,”
J. Chem. Phys.
160
,
164723
(
2023
) submitted.

Supplementary Material

You do not currently have access to this content.