Clathrate hydrates are vital in energy research and environmental applications. Understanding their stability is crucial for harnessing their potential. In this work, we employ direct coexistence simulations to study finite-size effects in the determination of the three-phase equilibrium temperature (T3) for methane hydrates. Two popular water models, TIP4P/Ice and TIP4P/2005, are employed, exploring various system sizes by varying the number of molecules in the hydrate, liquid, and gas phases. The results reveal that finite-size effects play a crucial role in determining T3. The study includes nine configurations with varying system sizes, demonstrating that smaller systems, particularly those leading to stoichiometric conditions and bubble formation, may yield inaccurate T3 values. The emergence of methane bubbles within the liquid phase, observed in smaller configurations, significantly influences the behavior of the system and can lead to erroneous temperature estimations. Our findings reveal finite-size effects on the calculation of T3 by direct coexistence simulations and clarify the system size convergence for both models, shedding light on discrepancies found in the literature. The results contribute to a deeper understanding of the phase equilibrium of gas hydrates and offer valuable information for future research in this field.

1.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
2007
).
2.
H.
Davy
, “
The Bakerian lecture. On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies
,”
Philos. Trans. R. Soc. London
101
(
1811
),
1811
.
3.
J. A.
Ripmeester
,
J. S.
Tse
,
C. I.
Ratcliffe
, and
B. M.
Powell
, “
A new clathrate hydrate structure
,”
Nature
325
,
135
(
1987
).
4.
R. K.
McMullan
and
G.
Jeffrey
, “
Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate
,”
J. Chem. Phys.
42
(
8
),
2725
2732
(
1965
).
5.
T. C.
Mak
and
R. K.
McMullan
, “
Polyhedral clathrate hydrates. X. structure of the double hydrate of tetrahydrofuran and hydrogen sulfide
,”
J. Chem. Phys.
42
(
8
),
2732
2737
(
1965
).
6.
R.
Mallek
,
C.
Miqueu
,
M.
Jacob
, and
C.
Dicharry
, “
Experimental evaluation of the partial thermal energy compensation of hydrate crystallization from cyclopentane-loaded porous activated carbon particles immersed in brine
,”
Desalination
530
,
115662
(
2022
).
7.
R.
Mallek
,
C.
Miqueu
,
M.
Jacob
, and
C.
Dicharry
, “
Investigation on hydrate formation from cyclopentane-loaded porous activated carbon particles
,”
Chem. Eng. Sci.
257
,
117714
(
2022
).
8.
H.
Lee
,
J.
Lee
,
D. Y.
Kim
,
J.
Park
,
Y.
Seo
,
H.
Zeng
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Tuning clathrate hydrates for hydrogen storage
,”
Nature
434
,
743
(
2005
).
9.
A.
Martin
and
C. J.
Peters
, “
Hydrogen storage in sH clathrate hydrates: Thermodynamic model
,”
J. Phys. Chem. B
113
,
7558
(
2009
).
10.
E. D.
Sloan
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
(
2003
).
11.
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K.
Marsh
, and
E. D.
Sloan
, “
Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate
,”
Science
306
,
469
(
2004
).
12.
T. A.
Strobel
,
C. A.
Koh
, and
E. D.
Sloan
, “
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen
,”
J. Phys. Chem. B
112
,
1885
(
2008
).
13.
T. A.
Strobel
,
E. D.
Sloan
, and
C. A.
Koh
, “
Raman spectroscopic studies of hydrogen clathrate hydrates
,”
J. Chem. Phys.
130
,
014506
(
2009
).
14.
I.
Aya
,
K.
Yamane
, and
N.
Yamada
, “
Stability of clathrate-hydrate of carbon dioxide in highly pressured water
,” in
Proceedings of the First International Offshore and Polar Engineering Conference
, edited by
J. S.
Chung
,
B. J.
Natvig
,
K.
Kaneko
, and
A. J.
Ferrante
(
ISOPE
,
Cupertino, CA
,
1991
), p.
427
.
15.
J. P.
Long
and
E. D.
Sloan
, “
Hydrates in the ocean and evidence for the location of hydrate formation
,”
Int. J. Thermophys.
17
,
1
(
1996
).
16.
H.
Herzog
,
K.
Caldeira
, and
E.
Adams
, “
Carbon sequestration via direct injection
,” in
Encyclopedia of Ocean Sciences
, edited by
J.
Steele
,
S.
Thorpe
, and
K.
Turekian
(
Academic
,
London
,
2001
), Vol. 1, p.
408
.
17.
E. M.
Yezdimer
,
P. T.
Cummings
, and
A. A.
Chialvo
, “
Determination of the gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation
,”
J. Phys. Chem. A
106
,
7982
(
2002
).
18.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
, “
On the occurrence of clathrate hydrates in extreme conditions: Dissociation pressures and occupancies at cryogenic temperatures with application to planetary systems
,”
Planet. Sci. J.
1
,
80
(
2020
).
19.
E.
Pettinelli
,
B.
Cosciotti
,
F.
Di Paolo
,
S. E.
Lauro
,
E.
Mattei
,
R.
Orosei
, and
G.
Vannaroni
, “
Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review
,”
Rev. Geophys.
53
(
3
),
593
641
, (
2015
).
20.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Spontaneous NaCl-doped ice at seawater conditions: Focus on the mechanisms of ion inclusion
,”
Phys. Chem. Chem. Phys.
19
,
9566
(
2017
).
21.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Spontaneous nacl-doped ices Ih, IC, III, V and VI. Understanding the mechanism of ion inclusion and its dependence on the crystalline structure of ice
,”
Phys. Chem. Chem. Phys.
23
,
22897
22911
(
2021
).
22.
O.
Prieto-Ballesteros
,
J. S.
Kargel
,
M.
Fernández-Sampedro
,
F.
Selsis
,
E. S.
Martínez
, and
D. L.
Hogenboom
, “
Evaluation of the possible presence of clathrate hydrates in Europa’s icy shell or seafloor
,”
Icarus
177
(
2
),
491
505
(
2005
), part of Special Issue: Europa Icy Shell.
23.
J. S.
Kargel
,
J. Z.
Kaye
,
J. W.
Head
,
G. M.
Marion
,
R.
Sassen
,
J. K.
Crowley
,
O. P.
Ballesteros
,
S. A.
Grant
, and
D. L.
Hogenboom
, “
Europa’s crust and ocean: Origin, composition, and the prospects for life
,”
Icarus
148
(
1
),
226
265
(
2000
).
24.
O.
Prieto-Ballesteros
,
J. S.
Kargel
,
A. G.
Fairén
,
D. C.
Fernández-Remolar
,
J. M.
Dohm
, and
R.
Amils
, “
Interglacial clathrate destabilization on Mars: Possible contributing source of its atmospheric methane
,”
Geology
34
(
3
),
149
152
(
2006
).
25.
K. A.
Kvenvolden
, “
Methane hydrate - A major reservoir of carbon in the shallow geosphere
,”
Chem. Geol.
71
,
41
(
1988
).
26.
G. J.
MacDonald
, “
The future of methane as an energy resource
,”
Annu. Rev. Energy
15
,
53
(
1990
).
27.
C.
Bourry
,
J. L.
Charlou
,
J. P.
Donval
,
M.
Brunelli
,
C.
Focsa
, and
B.
Chazallon
, “
X-ray synchrotron diffraction study of natural gas hydrates from African margin
,”
Geophys. Res. Lett.
34
,
L22303
, (
2007
).
28.
H.
Lu
,
Y.
Seo
,
J.
Lee
,
I.
Moudrakovski
,
J. A.
Ripmeester
,
N. R.
Chapman
,
R. B.
Coffin
,
G.
Gardner
, and
J.
Pohlman
, “
Complex gas hydrate from the Cascadia margin
,”
Nature
445
,
303
(
2007
).
29.
T.
Yu
,
G.
Guan
,
A.
Abudula
,
A.
Yoshida
,
D.
Wang
, and
Y.
Song
, “
Enhanced gas recovery from methane hydrate reservoir in the Nankai Trough, Japan
,”
Energy Proc.
158
,
5213
5218
(
2019
), part of Special Issue: Innovative Solutions for Energy Transitions.
30.
K.
Yamamoto
,
X.-X.
Wang
,
M.
Tamaki
, and
K.
Suzuki
, “
The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir
,”
RSC Adv.
9
,
25987
26013
(
2019
).
31.
Operational Overview of the First Offshore Production Test of Methane Hydrates in the Eastern Nankai Trough, Vol. Day 3 Wed, May 07, 2014 of OTC Offshore Technology Conference
,
2014
.
32.
Y.
Konno
,
T.
Fujii
,
A.
Sato
,
K.
Akamine
,
M.
Naiki
,
Y.
Masuda
,
K.
Yamamoto
, and
J.
Nagao
, “
Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production
,”
Energy Fuels
31
(
3
),
2607
2616
(
2017
).
33.
M.
Ketzer
,
D.
Praeg
,
L. F.
Rodrigues
,
A.
Augustin
,
M. A.
Pivel
,
M.
Rahmati-Abkenar
,
D. J.
Miller
,
A. R.
Viana
, and
J. A.
Cupertino
, “
Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere
,”
Nat. Commun.
11
(
1
),
3788
(
2020
).
34.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
35.
E. G.
Noya
,
L. M.
Sesé
,
R.
Ramírez
,
C.
McBride
,
M. M.
Conde
, and
C.
Vega
, “
Path integral Monte Carlo simulations for rigid rotors and their application to water
,”
Mol. Phys.
109
(
1
),
149
168
(
2011
).
36.
Y.
Krishnan
,
P. G.
Rosingana
,
M. R.
Ghaani
, and
N. J.
English
, “
Controlling hydrogen release from remaining-intact clathrate hydrates by electromagnetic fields: Molecular engineering via microsecond non-equilibrium molecular dynamics
,”
RSC Adv.
12
(
7
),
4370
4376
(
2022
).
37.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
, “
On the phase behaviors of hydrocarbon and noble gas clathrate hydrates: Dissociation pressures, phase diagram, occupancies, and equilibrium with aqueous solution
,”
J. Chem. Phys.
149
,
074502
(
2018
).
38.
M.
Matsuo
,
Y.
Takii
,
M.
Matsumoto
, and
H.
Tanaka
, “
On the occupancy of carbon dioxide clathrate hydrates: Grandcanonical Monte Carlo simulations
,”
J. Phys. Soc. Jpn.
81
(
Suppl. A
),
SA027
(
2012
).
39.
T.
Yagasaki
,
M.
Matsumoto
,
Y.
Andoh
,
S.
Okazaki
, and
H.
Tanaka
, “
Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study
,”
J. Phys. Chem. B
118
,
1900
(
2014
).
40.
T.
Yagasaki
,
M.
Matsumoto
,
Y.
Andoh
,
S.
Okazaki
, and
H.
Tanaka
, “
Dissociation of methane hydrate in aqueous NaCl solutions
,”
J. Phys. Chem. B
118
,
11797
(
2014
).
41.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Mechanism of slow crystal growth of tetrahydrofuran clathrate hydrate
,”
J. Phys. Chem. C
120
,
3305
(
2016
).
42.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Molecular dynamics study of kinetic hydrate inhibitors: The optimal inhibitor size and effect of guest species
,”
J. Phys. Chem. C
123
,
1806
(
2019
).
43.
M. A.
Bellucci
,
M. R.
Walsh
, and
B. L.
Trout
, “
Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates
,”
J. Phys. Chem. C
122
,
2673
(
2018
).
44.
R.
Susilo
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Tuning methane content in gas hydrates via thermodynamic modeling and molecular dynamics simulation
,”
Fluid Phase Equilib.
263
(
1
),
6
17
(
2008
).
45.
E. M.
Myshakin
,
H.
Jiang
,
R. P.
Warzinski
, and
K. D.
Jordan
, “
Molecular dynamics simulations of methane hydrate decomposition
,”
J. Phys. Chem. A
113
(
10
),
1913
1921
(
2009
).
46.
V. S.
Baghel
,
R.
Kumar
, and
S.
Roy
, “
Heat transfer calculations for decomposition of structure I methane hydrates by molecular dynamics simulation
,”
J. Phys. Chem. C
117
(
23
),
12172
12182
(
2013
).
47.
J.
Kondori
,
S.
Zendehboudi
, and
L.
James
, “
New insights into methane hydrate dissociation: Utilization of molecular dynamics strategy
,”
Fuel
249
,
264
276
(
2019
).
48.
A. A.
Bertolazzo
,
P. M.
Naullage
,
B.
Peters
, and
V.
Molinero
, “
The clathrate-water interface is oleophilic
,”
J. Phys. Chem. Lett.
9
(
12
),
3224
3231
(
2018
).
49.
P. M.
Naullage
,
A. A.
Bertolazzo
, and
V.
Molinero
, “
How do surfactants control the agglomeration of clathrate hydrates?
,”
ACS Cent. Sci.
5
(
3
),
428
439
(
2019
).
50.
B.
Song
,
A. H.
Nguyen
, and
V.
Molinero
, “
Can guest occupancy in binary clathrate hydrates be tuned through control of the growth temperature?
,”
J. Phys. Chem. C
118
(
40
),
23022
23031
(
2014
).
51.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
(
5956
),
1095
1098
(
2009
).
52.
P. E.
Brumby
,
D.
Yuhara
,
T.
Hasegawa
,
D. T.
Wu
,
A. K.
Sum
, and
K.
Yasuoka
, “
Cage occupancies, lattice constants, and guest chemical potentials for structure II hydrogen clathrate hydrate from Gibbs ensemble Monte Carlo simulations
,”
J. Chem. Phys.
150
(
13
),
134503
(
2019
).
53.
P. E.
Brumby
,
D.
Yuhara
,
D. T.
Wu
,
A. K.
Sum
, and
K.
Yasuoka
, “
Cage occupancy of methane hydrates from Gibbs ensemble Monte Carlo simulations
,”
Fluid Phase Equilib.
413
,
242
248
(
2016
).
54.
J. M.
Miguez
,
M. M.
Conde
,
J. P.
Torre
,
F. J.
Blas
,
M. M.
Pineiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
55.
J.-Y.
Wu
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
Molecular dynamics study on the growth mechanism of methane plus tetrahydrofuran mixed hydrates
,”
J. Phys. Chem. C
119
(
34
),
19883
19890
(
2015
).
56.
P. A.
Oluwunmi
,
A. R.
Finney
, and
P. M.
Rodger
, “
Molecular dynamics screening for new kinetic inhibitors of methane hydrate
,”
Can. J. Chem.
93
(
9
),
1043
1049
(
2015
).
57.
J.
Kondori
,
S.
Zendehboudi
, and
M. E.
Hossain
, “
A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective
,”
J. Pet. Sci. Eng.
159
,
754
772
(
2017
).
58.
Y.-T.
Tung
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
The growth of structure I methane hydrate from molecular dynamics simulations
,”
J. Phys. Chem. B
114
(
33
),
10804
10813
(
2010
).
59.
N.
Choudhary
,
V. R.
Hande
,
S.
Roy
,
S.
Chakrabarty
, and
R.
Kumar
, “
Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: A molecular dynamics study
,”
J. Phys. Chem. B
122
(
25
),
6536
6542
(
2018
).
60.
F.
Jimenez-Angeles
and
A.
Firoozabadi
, “
Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations
,”
J. Phys. Chem. C
118
(
21
),
11310
11318
(
2014
).
61.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
(
20
),
2942
2947
(
2012
).
62.
A. H.
Nguyen
and
V.
Molinero
, “
Cross-nucleation between clathrate hydrate polymorphs: Assessing the role of stability, growth rate, and structure matching
,”
J. Chem. Phys.
140
(
8
),
084506
(
2014
).
63.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
(
48
),
19544
19547
(
2012
).
64.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Nucleation pathways of clathrate hydrates: Effect of guest size and solubility
,”
J. Phys. Chem. B
114
(
43
),
13796
13807
(
2010
).
65.
Y.
Chen
,
C.
Chen
, and
A. K.
Sum
, “
Molecular resolution into the nucleation and crystal growth of clathrate hydrates formed from methane and propane mixtures
,”
Cryst. Growth Des.
21
(
2
),
960
973
(
2021
).
66.
B. C.
Barnes
,
B. C.
Knott
,
G. T.
Beckham
,
D. T.
Wu
, and
A. K.
Sum
, “
Reaction coordinate of incipient methane clathrate hydrate nucleation
,”
J. Phys. Chem. B
118
(
46
),
13236
13243
(
2014
).
67.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
(
2022
).
68.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
E.
Noya
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
(
11
),
114505
(
2023
).
69.
J.
Algaba
,
I. M.
Zerón
,
J. M.
Míguez
,
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
C.
Vega
, and
F. J.
Blas
, “
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
,”
J. Chem. Phys.
158
(
18
),
184703
(
2023
).
70.
B.
Fang
,
F.
Ning
,
P.
Cao
,
L.
Peng
,
J.
Wu
,
Z.
Zhang
,
T. J.
Vlugt
, and
S.
Kjelstrup
, “
Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-II clathrate hydrates
,”
J. Phys. Chem. C
121
(
43
),
23911
23925
(
2017
).
71.
B.
Fang
,
O. A.
Moultos
,
T.
,
J.
Sun
,
Z.
Liu
,
F.
Ning
, and
T. J.
Vlugt
, “
Effects of nanobubbles on methane hydrate dissociation: A molecular simulation study
,”
Fuel
345
,
128230
(
2023
).
72.
B.
Fang
,
T.
,
W.
Li
,
O. A.
Moultos
,
T. J.
Vlugt
, and
F.
Ning
, “
Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions
,”
Energy
288
,
129755
(
2024
).
73.
T.
Nakayama
,
K.
Koga
, and
H.
Tanaka
, “
Augmented stability of hydrogen clathrate hydrates by weakly polar molecules
,”
J. Chem. Phys.
131
,
214506
(
21
) (
2009
).
74.
L.
Hakim
,
K.
Koga
, and
H.
Tanaka
, “
Thermodynamic stability of hydrogen hydrates of ice Ic and II structures
,”
Phys. Rev. B
82
(
14
),
144105
(
2010
).
75.
P.
Cao
,
F.
Ning
,
J.
Wu
,
B.
Cao
,
T.
Li
,
H. A.
Sveinsson
,
Z.
Liu
,
T. J.
Vlugt
, and
M.
Hyodo
, “
Mechanical response of nanocrystalline ice-contained methane hydrates: Key role of water ice
,”
ACS Appl. Mater. Interfaces
12
(
12
),
14016
14028
(
2020
).
76.
K.
Katsumasa
,
K.
Koga
, and
H.
Tanaka
, “
On the thermodynamic stability of hydrogen clathrate hydrates
,”
J. Chem. Phys.
127
(
4
),
044509
(
2007
).
77.
Á. M.
Fernández-Fernández
,
M. M.
Conde
,
G.
Pérez-Sánchez
,
M.
Pérez-Rodríguez
, and
M. M.
Pineiro
, “
Molecular simulation of methane hydrate growth confined into a silica pore
,”
J. Mol. Liq.
362
,
119698
(
2022
).
78.
M.
Pérez-Rodríguez
,
A.
Vidal-Vidal
,
J.
Míguez
,
F. J.
Blas
,
J.-P.
Torré
, and
M. M.
Piñeiro
, “
Computational study of the interplay between intermolecular interactions and CO2 orientations in type I hydrates
,”
Phys. Chem. Chem. Phys.
19
(
4
),
3384
3393
(
2017
).
79.
S.
Sarupria
and
P. G.
Debenedetti
, “
Molecular dynamics study of carbon dioxide hydrate dissociation
,”
J. Phys. Chem. A
115
(
23
),
6102
6111
(
2011
).
80.
R. S.
DeFever
and
S.
Sarupria
, “
Nucleation mechanism of clathrate hydrates of water-soluble guest molecules
,”
J. Chem. Phys.
147
(
20
),
204503
(
2017
).
81.
S. A.
Bagherzadeh
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
,”
J. Chem. Phys.
142
(
21
),
214701
(
2015
).
82.
S.
Alavi
,
J.
Ripmeester
, and
D.
Klug
, “
Molecular-dynamics study of structure II hydrogen clathrates
,”
J. Chem. Phys.
123
(
2
),
024507
(
2005
).
83.
S.
Alavi
,
J.
Ripmeester
, and
D.
Klug
, “
Molecular-dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates
,”
J. Chem. Phys.
124
(
1
),
014704
(
2006
).
84.
S.
Alavi
and
J. A.
Ripmeester
, “
Hydrogen-gas migration through clathrate hydrate cages
,”
Angew. Chem.
119
(
32
),
6214
6217
(
2007
).
85.
A.
Ladd
and
L.
Woodcock
, “
Triple-point coexistence properties of the Lennard-Jones system
,”
Chem. Phys. Lett.
51
(
1
),
155
159
(
1977
).
86.
A.
Ladd
and
L.
Woodcock
, “
Interfacial and co-existence properties of the Lennard-Jones system at the triple point
,”
Mol. Phys.
36
(
2
),
611
619
(
1978
).
87.
J. N.
Cape
and
L. V.
Woodcock
, “
Molecular dynamics calculation of phase coexistence properties: The soft-sphere melting transition
,”
Chem. Phys. Lett.
59
(
2
),
271
274
(
1978
).
88.
J. R.
Morris
and
X.
Song
, “
The melting lines of model systems calculated from coexistence simulations
,”
J. Chem. Phys.
116
(
21
),
9352
9358
(
2002
).
89.
O. A.
Karim
and
A.
Haymet
, “
The ice/water interface: A molecular dynamics simulation study
,”
J. Chem. Phys.
89
(
11
),
6889
6896
(
1988
).
90.
O. A.
Karim
,
P. A.
Kay
, and
A.
Haymet
, “
The ice/water interface: A molecular dynamics simulation using the simple point charge model
,”
J. Chem. Phys.
92
(
7
),
4634
4635
(
1990
).
91.
T.
Bryk
and
A.
Haymet
, “
Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces
,”
J. Chem. Phys.
117
(
22
),
10258
10268
(
2002
).
92.
T.
Bryk
and
A.
Haymet
, “
The ice/water interface: Density–temperature phase diagram for the SPC/E model of liquid water
,”
Mol. Simul.
30
(
2-3
),
131
135
(
2004
).
93.
J.
Wang
,
S.
Yoo
,
J.
Bai
,
J. R.
Morris
, and
X. C.
Zeng
, “
Melting temperature of ice Ih calculated from coexisting solid-liquid phases
,”
J. Chem. Phys.
123
(
3
),
036101
(
2005
).
94.
H.
Nada
,
J.
Van der Eerden
, and
Y.
Furukawa
, “
A clear observation of crystal growth of ice from water in a molecular dynamics simulation with a six-site potential model of H2O
,”
J. Cryst. Growth
266
(
1–3
),
297
302
(
2004
).
95.
M.
Carignano
,
P.
Shepson
, and
I.
Szleifer
, “
Molecular dynamics simulations of ice growth from supercooled water
,”
Mol. Phys.
103
(
21-23
),
2957
2967
(
2005
).
96.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
97.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
98.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/ICE
,”
J. Chem. Phys.
122
,
234511
(
2005
).
99.
M.
Conde
and
C.
Vega
, “
Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations
,”
J. Chem. Phys.
138
(
5
),
056101
(
2013
).
100.
L.
Jensen
,
K.
Thomsen
,
N.
von Solms
,
S.
Wierzchowski
,
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Calculation of liquid Water–Hydrate–Methane vapor phase equilibria from molecular simulations
,”
J. Phys. Chem. B
114
,
5775
(
2010
).
101.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
102.
A.
Fernández-Fernández
,
M.
Pérez-Rodríguez
,
A.
Comesana
, and
M.
Pineiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
(
2019
).
103.
A. Z.
Panagiotopoulos
, “
Molecular simulation of phase coexistence: Finite-size effects and determination of critical parameters for two- and three-dimensional Lennard-Jones fluids
,”
Int. J. Thermophys.
15
,
1057
1072
(
1994
).
104.
P.
Orea
,
J.
López-Lemus
, and
J.
Alejandre
, “
Oscillatory surface tension due to finite-size effects
,”
J. Chem. Phys.
123
(
11
),
114702
(
2005
).
105.
K.
Binder
and
M.
Müller
, “
Computer simulation of profiles of interfaces between coexisting phases: Do we understand their finite size effects?
,”
Int. J. Mod. Phys. C
11
(
06
),
1093
1113
(
2000
).
106.
H. L.
Vörtler
,
K.
Schäfer
, and
W. R.
Smith
, “
Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well Fluids: Finite size effects
,”
J. Phys. Chem. B
112
(
15
),
4656
4661
(
2008
).
107.
M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
(
24
),
244506
(
2017
).
108.
S.
Blazquez
,
C.
Vega
, and
M.
Conde
, “
Three phase equilibria of the methane hydrate in NaCl solutions: A simulation study
,”
J. Mol. Liq.
383
,
122031
(
2023
).
109.
R.
García Fernández
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface
,”
J. Chem. Phys.
124
,
144506
(
2006
).
110.
C.
Vega
,
M.
Martin-Conde
, and
A.
Patrykiejew
, “
Absence of superheating for ice Ih with a free surface: A new method of determining the melting point of different water models
,”
Mol. Phys.
104
,
3583
(
2006
).
111.
M.
Yousuf
,
S. B.
Qadri
,
D. L.
Knies
,
K. S.
Grabowski
,
R. B.
Coffin
, and
J. W.
Pohlman
, “
Novel results on structural investigations of natural minerals of clathrate hydrates
,”
Appl. Phys. A
78
,
925
(
2004
).
112.
L.
Pauling
,
The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry
(
Cornell University Press
,
1960
).
113.
F.
Hollander
and
G. A.
Jeffrey
, “
Neutron diffraction study of the crystal structure of ethylene oxide deuterohydrate at 80 K
,”
J. Chem. Phys.
66
,
4699
(
1977
).
114.
S. W.
Peterson
and
H. A.
Levy
, “
A single-crystal neutro diffraction study of heavy ice
,”
Acta Cryst.
10
,
70
(
1957
).
115.
V.
Buch
,
P.
Sandler
, and
J.
Sadlej
, “
Simulations of H2O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice
,”
J. Phys. Chem. B
102
,
8641
(
1998
).
116.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
(
1933
).
117.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
(
2005
).
118.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
119.
D.
Beeman
, “
Some multistep methods for use in molecular dynamics calculations
,”
J. Comput. Phys.
20
(
2
),
130
139
(
1976
).
120.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
(
2
),
255
268
(
1984
).
121.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
122.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
123.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
124.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
(
1997
).
125.
B.
Hess
, “
P-Lincs: A parallel linear constraint solver for molecular simulation
,”
J. Chem. Theory Comput.
4
,
116
122
(
2008
).
126.
B.
Guillot
and
Y.
Guissani
, “
A computer simulation study of the temperature dependence of the hydrophobic hydration
,”
J. Chem. Phys.
99
,
8075
(
1993
).
127.
D.
Paschek
, “
Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models
,”
J. Chem. Phys.
120
,
6674
(
2004
).
128.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
(
43
),
21241
21248
(
2011
).
129.
S.
Liang
and
P. G.
Kusalik
, “
Exploring nucleation of H2S hydrates
,”
Chem. Sci.
2
(
7
),
1286
1292
(
2011
).
130.
D.
Rozmanov
and
P. G.
Kusalik
, “
Temperature dependence of crystal growth of hexagonal ice (Ih)
,”
Phys. Chem. Chem. Phys.
13
(
34
),
15501
15511
(
2011
).
131.
K. W.
Hall
,
Z.
Zhang
, and
P. G.
Kusalik
, “
Unraveling mixed hydrate formation: Microscopic insights into early stage behavior
,”
J. Phys. Chem. B
120
(
51
),
13218
13223
(
2016
).
132.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
, “
Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems
,”
J. Chem. Phys.
125
(
3
),
034705
(
2006
).
133.
R. S.
Singh
,
J. C.
Palmer
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water
,”
J. Chem. Phys.
150
,
224503
(
2019
).
134.
P.
Montero de Hijes
and
C.
Vega
, “
On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system
,”
J. Chem. Phys.
156
(
1
),
014505
(
2022
).
135.
S.
Blazquez
and
C.
Vega
, “
Melting points of water models: Current situation
,”
J. Chem. Phys.
156
(
21
),
216101
(
2022
).
136.
S.
Dufal
,
A.
Galindo
,
G.
Jackson
, and
A. J.
Haslam
, “
Modelling the effect of methanol, glycol inhibitors and electrolytes on the equilibrium stability of hydrates with the SAFT-VR approach
,”
Mol. Phys.
110
(
11–12
),
1223
1240
(
2012
).

Supplementary Material

You do not currently have access to this content.