Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4′-dioxidobiphenyl-3,3′-dicarboxylate)—henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn—is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew–Burke–Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential’s (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.

1.
A. R.
Millward
and
O. M.
Yaghi
, “
Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature
,”
J. Am. Chem. Soc.
127
,
17998
17999
(
2005
).
2.
K.
Sumida
,
D. L.
Rogow
,
J. A.
Mason
,
T. M.
McDonald
,
E. D.
Bloch
,
Z. R.
Herm
,
T.-H.
Bae
, and
J. R.
Long
, “
Carbon dioxide capture in metal–organic frameworks
,”
Chem. Rev.
112
,
724
781
(
2012
).
3.
J.
Liu
,
P. K.
Thallapally
,
B. P.
McGrail
,
D. R.
Brown
, and
J.
Liu
, “
Progress in adsorption-based CO2 capture by metal–organic frameworks
,”
Chem. Soc. Rev.
41
,
2308
2322
(
2012
).
4.
C. A.
Trickett
,
A.
Helal
,
B. A.
Al-Maythalony
,
Z. H.
Yamani
,
K. E.
Cordova
, and
O. M.
Yaghi
, “
The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion
,”
Nat. Rev. Mater.
2
,
17045
(
2017
).
5.
M.
Younas
,
S.
Ul Azam
,
S.
Farukh
,
N.
Ullah
,
H.
Ihsan
,
H.
Mukhtar
, and
M.
Rezakazemi
, “
Metal–organic frameworks for carbon dioxide capture
,” in
Metal–Organic Frameworks for Carbon Capture and Energy
(
ACS Publications
,
2021
), pp.
203
238
.
6.
T. A.
Makal
,
J.-R.
Li
,
W.
Lu
, and
H.-C.
Zhou
, “
Methane storage in advanced porous materials
,”
Chem. Soc. Rev.
41
,
7761
7779
(
2012
).
7.
N. L.
Rosi
,
J.
Eckert
,
M.
Eddaoudi
,
D. T.
Vodak
,
J.
Kim
,
M.
O’Keeffe
, and
O. M.
Yaghi
, “
Hydrogen storage in microporous metal–organic frameworks
,”
Science
300
,
1127
1129
(
2003
).
8.
T.
Qiu
,
Z.
Liang
,
W.
Guo
,
H.
Tabassum
,
S.
Gao
, and
R.
Zou
, “
Metal–organic framework-based materials for energy conversion and storage
,”
ACS Energy Lett.
5
,
520
532
(
2020
).
9.
Y.
Liu
,
L.
Chen
,
L.
Yang
,
T.
Lan
,
H.
Wang
,
C.
Hu
,
X.
Han
,
Q.
Liu
,
J.
Chen
,
Z.
Feng
,
X.
Cui
,
Q.
Fang
,
H.
Wang
,
L.
Li
,
Y.
Li
,
H.
Xing
,
S.
Yang
,
D.
Zhao
, and
J.
Li
, “
Porous framework materials for energy and environment relevant applications: A systematic review
,”
Green Energy Environ.
9
,
217
310
(
2024
).
10.
H. D.
Lawson
,
S. P.
Walton
, and
C.
Chan
, “
Metal–organic frameworks for drug delivery: A design perspective
,”
ACS Appl. Mater. Interfaces
13
,
7004
7020
(
2021
).
11.
S. M.
Moosavi
,
A.
Nandy
,
K. M.
Jablonka
,
D.
Ongari
,
J. P.
Janet
,
P. G.
Boyd
,
Y.
Lee
,
B.
Smit
, and
H. J.
Kulik
, “
Understanding the diversity of the metal–organic framework ecosystem
,”
Nat. Commun.
11
,
4068
(
2020
).
12.
World Meteorological Organization
,
WMO Greenhouse Gas Bulletin: No. 19–15 November 2023. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022
, https://library.wmo.int/records/item/68532-no-19-15-november-2023.
13.
X.
Zhang
,
H.
Zhao
,
Q.
Yang
,
M.
Yao
,
Y.-n.
Wu
, and
Y.
Gu
, “
Direct air capture of CO2 in designed metal–organic frameworks at lab and pilot scale
,”
Carbon Capture Sci. Technol.
9
,
100145
(
2023
).
14.
V. M.
Georgieva
,
E. L.
Bruce
,
M. C.
Verbraeken
,
A. R.
Scott
,
W. J.
Casteel
, Jr.
,
S.
Brandani
, and
P. A.
Wright
, “
Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite
,”
J. Am. Chem. Soc.
141
,
12744
12759
(
2019
).
15.
M. M.
Lozinska
,
J. P.
Mowat
,
P. A.
Wright
,
S. P.
Thompson
,
J. L.
Jorda
,
M.
Palomino
,
S.
Valencia
, and
F.
Rey
, “
Cation gating and relocation during the highly selective ‘trapdoor’ adsorption of CO2 on univalent cation forms of zeolite Rho
,”
Chem. Mater.
26
,
2052
2061
(
2014
).
16.
T. M.
McDonald
,
W. R.
Lee
,
J. A.
Mason
,
B. M.
Wiers
,
C. S.
Hong
, and
J. R.
Long
, “
Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc)
,”
J. Am. Chem. Soc.
134
,
7056
7065
(
2012
).
17.
T. M.
McDonald
,
J. A.
Mason
,
X.
Kong
,
E. D.
Bloch
,
D.
Gygi
,
A.
Dani
,
V.
Crocella
,
F.
Giordanino
,
S. O.
Odoh
,
W. S.
Drisdell
et al, “
Cooperative insertion of CO2 in diamine-appended metal–organic frameworks
,”
Nature
519
,
303
308
(
2015
).
18.
T.
Gelles
,
S.
Lawson
,
A. A.
Rownaghi
, and
F.
Rezaei
, “
Recent advances in development of amine functionalized adsorbents for CO2 capture
,”
Adsorption
26
,
5
50
(
2020
).
19.
A. C.
Forse
,
P. J.
Milner
,
J.-H.
Lee
,
H. N.
Redfearn
,
J.
Oktawiec
,
R. L.
Siegelman
,
J. D.
Martell
,
B.
Dinakar
,
L. B.
Zasada
,
M. I.
Gonzalez
et al, “
Elucidating CO2 chemisorption in diamine-appended metal–organic frameworks
,”
J. Am. Chem. Soc.
140
,
18016
18031
(
2018
).
20.
P.-Q.
Liao
,
X.-W.
Chen
,
S.-Y.
Liu
,
X.-Y.
Li
,
Y.-T.
Xu
,
M.
Tang
,
Z.
Rui
,
H.
Ji
,
J.-P.
Zhang
, and
X.-M.
Chen
, “
Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures
,”
Chem. Sci.
7
,
6528
6533
(
2016
).
21.
E. J.
Kim
,
R. L.
Siegelman
,
H. Z.
Jiang
,
A. C.
Forse
,
J.-H.
Lee
,
J. D.
Martell
,
P. J.
Milner
,
J. M.
Falkowski
,
J. B.
Neaton
,
J. A.
Reimer
et al, “
Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks
,”
Science
369
,
392
396
(
2020
).
22.
R. L.
Siegelman
,
T. M.
McDonald
,
M. I.
Gonzalez
,
J. D.
Martell
,
P. J.
Milner
,
J. A.
Mason
,
A. H.
Berger
,
A. S.
Bhown
, and
J. R.
Long
, “
Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal–organic frameworks
,”
J. Am. Chem. Soc.
139
,
10526
10538
(
2017
).
23.
Z.
Zhu
,
S. T.
Parker
,
A. C.
Forse
,
J.-H.
Lee
,
R. L.
Siegelman
,
P. J.
Milner
,
H.
Tsai
,
M.
Ye
,
S.
Xiong
,
M. V.
Paley
et al, “
Cooperative carbon dioxide capture in diamine-appended magnesium–olsalazine frameworks
,”
J. Am. Chem. Soc.
145
,
17151
17163
(
2023
).
24.
P. J.
Milner
,
R. L.
Siegelman
,
A. C.
Forse
,
M. I.
Gonzalez
,
T.
Runčevski
,
J. D.
Martell
,
J. A.
Reimer
, and
J. R.
Long
, “
A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism
,”
J. Am. Chem. Soc.
139
,
13541
13553
(
2017
).
25.
J.
Yong
,
R.
Xie
,
Q.
Huang
,
X.
Zhang
,
B.
Li
,
P.
Xie
,
C.
Wu
, and
L.
Jiang
, “
Diamine-appended metal–organic framework for carbon capture from wet flue gas: Characteristics and mechanism
,”
Sep. Purif. Technol.
328
,
125018
(
2024
).
26.
R. L.
Siegelman
,
P. J.
Milner
,
A. C.
Forse
,
J.-H.
Lee
,
K. A.
Colwell
,
J. B.
Neaton
,
J. A.
Reimer
,
S. C.
Weston
, and
J. R.
Long
, “
Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal–organic framework
,”
J. Am. Chem. Soc.
141
,
13171
13186
(
2019
).
27.
A. H.
Berge
,
S. M.
Pugh
,
M. I.
Short
,
C.
Kaur
,
Z.
Lu
,
J.-H.
Lee
,
C. J.
Pickard
,
A.
Sayari
, and
A. C.
Forse
, “
Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy
,”
Nat. Commun.
13
,
7763
(
2022
).
28.
S. E.
Ju
,
J. H.
Choe
,
M.
Kang
,
D. W.
Kang
,
H.
Kim
,
J.-H.
Lee
, and
C. S.
Hong
, “
Understanding correlation between CO2 insertion mechanism and chain length of diamine in metal–organic framework adsorbents
,”
ChemSusChem
14
,
2426
2433
(
2021
).
29.
H.
Zhang
,
L.-M.
Yang
, and
E.
Ganz
, “
Unveiling the molecular mechanism of CO2 capture in N-methylethylenediamine-grafted M2(dobpdc)
,”
ACS Sustain. Chem. Eng.
8
,
14616
14626
(
2020
).
30.
H.
Zhang
,
C.
Shang
,
L.-M.
Yang
, and
E.
Ganz
, “
Elucidation of the underlying mechanism of CO2 capture by ethylenediamine-functionalized M2(dobpdc) (M = Mg, Sc–Zn)
,”
Inorg. Chem.
59
,
16665
16671
(
2020
).
31.
J.-H.
Lee
,
R. L.
Siegelman
,
L.
Maserati
,
T.
Rangel
,
B. A.
Helms
,
J. R.
Long
, and
J. B.
Neaton
, “
Enhancement of CO2 binding and mechanical properties upon diamine functionalization of M2(dobpdc) metal–organic frameworks
,”
Chem. Sci.
9
,
5197
5206
(
2018
).
32.
J.
Kundu
,
J. F.
Stilck
,
J.-H.
Lee
,
J. B.
Neaton
,
D.
Prendergast
, and
S.
Whitelam
, “
Cooperative gas adsorption without a phase transition in metal–organic frameworks
,”
Phys. Rev. Lett.
121
,
015701
(
2018
).
33.
S.
Choi
,
T.
Watanabe
,
T.-H.
Bae
,
D. S.
Sholl
, and
C. W.
Jones
, “
Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases
,”
J. Phys. Chem. Lett.
3
,
1136
1141
(
2012
).
34.
R.
Stanton
and
D. J.
Trivedi
, “
Investigating the increased CO2 capture performance of amino acid functionalized nanoporous materials from first-principles and grand canonical Monte Carlo simulations
,”
J. Phys. Chem. Lett.
14
,
5069
5076
(
2023
).
35.
A. C.
Forse
and
P. J.
Milner
, “
New chemistry for enhanced carbon capture: Beyond ammonium carbamates
,”
Chem. Sci.
12
,
508
516
(
2021
).
36.
J.-H.
Lee
,
P.
Hyldgaard
, and
J. B.
Neaton
, “
An assessment of density functionals for predicting CO2 adsorption in diamine-functionalized metal–organic frameworks
,”
J. Chem. Phys.
156
,
154113
(
2022
).
37.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
38.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
(
1992
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
(
1999
).
41.
Y.
Zhang
and
W.
Yang
, “
Comment on ‘Generalized gradient approximation made simple
,’”
Phys. Rev. Lett.
80
,
890
(
1998
).
42.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
43.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
44.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
45.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
, “
Higher-accuracy van der Waals density functional
,”
Phys. Rev. B
82
,
081101
(
2010
).
46.
C.
Chen
and
S. P.
Ong
, “
A universal graph deep learning interatomic potential for the periodic table
,”
Nat. Comput. Sci.
2
,
718
728
(
2022
).
47.
ChemSpider: Search and share chemistry, https://www.chemspider.com/Chemical-Structure.70720.html.
48.
Avogadro: An open-source molecular builder and visualization tool, Version 1.20, https://avogadro.cc/.
49.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
,
17
(
2012
).
50.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
51.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
52.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
et al, “
Advanced capabilities for materials modelling with QUANTUM ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
53.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
De Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
et al, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
54.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
55.
A.
Dal Corso
, “
Pseudopotentials periodic table: From H to Pu
,”
Comput. Mater. Sci.
95
,
337
350
(
2014
).
57.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
, “
Pseudopotentials for high-throughput DFT calculations
,”
Comput. Mater. Sci.
81
,
446
452
(
2014
).
58.
G.
Prandini
,
A.
Marrazzo
,
I. E.
Castelli
,
N.
Mounet
, and
N.
Marzari
, “
Precision and efficiency in solid-state pseudopotential calculations
,”
npj Comput. Mater.
4
,
72
(
2018
).
59.
L.
Talirz
,
S.
Kumbhar
,
E.
Passaro
,
A. V.
Yakutovich
,
V.
Granata
,
F.
Gargiulo
,
M.
Borelli
,
M.
Uhrin
,
S. P.
Huber
,
S.
Zoupanos
et al, “
Materials cloud, a platform for open computational science
,”
Sci. Data
7
,
299
(
2020
).
60.
G.
Alonso
,
D.
Bahamon
,
F.
Keshavarz
,
X.
Giménez
,
P.
Gamallo
, and
R.
Sayós
, “
Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. Application in CO2 capture swing adsorption processes
,”
J. Phys. Chem. C
122
,
3945
3957
(
2018
).
61.
A.
Kundu
,
G.
Piccini
,
K.
Sillar
, and
J.
Sauer
, “
Ab initio prediction of adsorption isotherms for small molecules in metal–organic frameworks
,”
J. Am. Chem. Soc.
138
,
14047
14056
(
2016
).
62.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
63.
B.
Vlaisavljevich
,
J.
Huck
,
Z.
Hulvey
,
K.
Lee
,
J. A.
Mason
,
J. B.
Neaton
,
J. R.
Long
,
C. M.
Brown
,
D.
Alfè
,
A.
Michaelides
, and
B.
Smit
, “
Performance of van der Waals corrected functionals for guest adsorption in the M2(dobdc) metal–organic frameworks
,”
J. Phys. Chem. A
121
,
4139
4151
(
2017
).
64.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
65.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
66.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
67.
J.
Xu
,
Y. M.
Liu
,
A. S.
Lipton
,
J.
Ye
,
G. L.
Hoatson
,
P. J.
Milner
,
T. M.
McDonald
,
R. L.
Siegelman
,
A. C.
Forse
,
B.
Smit
et al, “
Amine dynamics in diamine-appended Mg2(dobpdc) metal–organic frameworks
,”
J. Phys. Chem Lett.
10
,
7044
7049
(
2019
).
69.
J. M.
Kolle
,
M.
Fayaz
, and
A.
Sayari
, “
Understanding the effect of water on CO2 adsorption
,”
Chem. Rev.
121
,
7280
7345
(
2021
).
70.
T. F.
Willems
,
C. H.
Rycroft
,
M.
Kazi
,
J. C.
Meza
, and
M.
Haranczyk
, “
Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
,”
Microporous Mesoporous Mater.
149
,
134
141
(
2012
).
71.
D.
Ongari
,
P. G.
Boyd
,
S.
Barthel
,
M.
Witman
,
M.
Haranczyk
, and
B.
Smit
, “
Accurate characterization of the pore volume in microporous crystalline materials
,”
Langmuir
33
,
14529
14538
(
2017
).
72.
V. Y.
Mao
,
P. J.
Milner
,
J.-H.
Lee
,
A. C.
Forse
,
E. J.
Kim
,
R. L.
Siegelman
,
C. M.
McGuirk
,
L. B.
Zasada
,
J. B.
Neaton
,
J. A.
Reimer
, and
J. R.
Long
, “
Cooperative carbon dioxide adsorption in alcoholamine‐ and alkoxyalkylamine‐functionalized metal–organic frameworks
,”
Angew. Chem., Int. Ed.
59
,
19468
19477
(
2020
).
73.
M.
Ozkan
,
S. P.
Nayak
,
A. D.
Ruiz
, and
W.
Jiang
, “
Current status and pillars of direct air capture technologies
,”
iScience
25
,
103990
(
2022
).
74.
A.
Sodiq
,
Y.
Abdullatif
,
B.
Aissa
,
A.
Ostovar
,
N.
Nassar
,
M.
El-Naas
, and
A.
Amhamed
, “
A review on progress made in direct air capture of CO2
,”
Environ. Technol. Innovation
29
,
102991
(
2023
).
75.
X.
Zhu
,
W.
Xie
,
J.
Wu
,
Y.
Miao
,
C.
Xiang
,
C.
Chen
,
B.
Ge
,
Z.
Gan
,
F.
Yang
,
M.
Zhang
et al, “
Recent advances in direct air capture by adsorption
,”
Chem. Soc. Rev.
51
,
6574
(
2022
).
76.
N.
McQueen
,
K. V.
Gomes
,
C.
McCormick
,
K.
Blumanthal
,
M.
Pisciotta
, and
J.
Wilcox
, “
A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future
,”
Prog. Energy
3
,
032001
(
2021
).
77.
R. A.
Khatri
,
S. S.
Chuang
,
Y.
Soong
, and
M.
Gray
, “
Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture
,”
Energy Fuels
20
,
1514
1520
(
2006
).
78.
M.
Jahandar Lashaki
,
S.
Khiavi
, and
A.
Sayari
, “
Stability of amine-functionalized CO2 adsorbents: A multifaceted puzzle
,”
Chem. Soc. Rev.
48
,
3320
3405
(
2019
).
79.
B.
Vlaisavljevich
,
S. O.
Odoh
,
S. K.
Schnell
,
A. L.
Dzubak
,
K.
Lee
,
N.
Planas
,
J. B.
Neaton
,
L.
Gagliardi
, and
B.
Smit
, “
CO2 induced phase transitions in diamine-appended metal–organic frameworks
,”
Chem. Sci.
6
,
5177
5185
(
2015
).
80.
Y.
Shaidu
,
W.
DeSnoo
,
A.
Smith
,
E.
Taw
, and
J. B.
Neaton
, “
Entropic effects on diamine dynamics and CO2 capture in diamine-appended Mg2(dopbdc) metal–organic frameworks
,”
J. Phys. Chem. Lett.
15
,
1130
1134
(
2024
).

Supplementary Material

You do not currently have access to this content.