In order to develop an efficient metal-free solar energy harvester, we herein performed the electronic structure calculation, followed by the hot carrier relaxation dynamics of two dimensional (2D) aza-covalent organic framework by time domain density functional calculations in conjunction with non-adiabatic molecular dynamics (NAMD) simulation. The electronic structure calculation shows that the aza-covalent organic framework (COF) is a direct bandgap semiconductor with acute charge separation and effective optical absorption in the UV-visible region. Our study of non-adiabatic molecular dynamics simulation predicts the sufficiently prolonged electron–hole recombination process (6.8 nanoseconds) and the comparatively faster electron (22.48 ps) and hole relaxation (0.51 ps) dynamics in this two-dimensional aza-COF. According to our theoretical analysis, strong electron–phonon coupling is responsible for the rapid charge relaxation, whereas the electron–hole recombination process is slowed down by relatively weak electron–phonon coupling, relatively lower non-adiabatic coupling, and quick decoherence time. We do hope that our results of NAMD simulation on exciton relaxation dynamics will be helpful for designing photovoltaic devices based on this two dimensional aza-COF.

1.
B.
O’regan
and
M.
Grätzel
, “
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
,”
Nature
353
,
737
740
(
1991
).
2.
M.
Freitag
,
J.
Teuscher
,
Y.
Saygili
,
X.
Zhang
,
F.
Giordano
,
P.
Liska
,
J.
Hua
,
S. M.
Zakeeruddin
,
J. E.
Moser
,
M.
Grätzel
, and
A.
Hagfeldt
, “
Dye-sensitized solar cells for efficient power generation under ambient lighting
,”
Nat. Photonics
11
,
372
378
(
2017
).
3.
R.
Sarkar
,
M.
Kar
,
M.
Habib
,
G.
Zhou
,
T.
Frauenheim
,
P.
Sarkar
,
S.
Pal
, and
O. V.
Prezhdo
, “
Common defects accelerate charge separation and reduce recombination in CNT/molecule composites: Atomistic quantum dynamics
,”
J. Am. Chem. Soc.
143
,
6649
6656
(
2021
).
4.
S.
Agrawal
,
W.
Lin
,
O. V.
Prezhdo
, and
D. J.
Trivedi
, “
Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets
,”
J. Chem. Phys.
153
,
054701
(
2020
).
5.
S.
Agrawal
,
A. S.
Vasenko
,
D. J.
Trivedi
, and
O. V.
Prezhdo
, “
Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride
,”
J. Chem. Phys.
156
,
094702
(
2022
).
6.
S.
Mondal
,
U.
Chowdhury
,
S.
Dey
,
M.
Habib
,
C.
Mora Perez
,
T.
Frauenheim
,
R.
Sarkar
,
S.
Pal
, and
O. V.
Prezhdo
, “
Controlling charge carrier dynamics in porphyrin nanorings by optically active templates
,”
J. Phys. Chem. Lett.
14
,
11384
11392
(
2023
).
7.
R.
Sarkar
,
M.
Habib
, and
S.
Pal
, “
Symmetrical linkage in porphyrin nanoring suppressed the electron–hole recombination demonstrated by nonadiabatic molecular dynamics
,”
J. Phys. Chem. Lett.
13
,
7213
7219
(
2022
).
8.
R.
Sarkar
,
M.
Habib
,
S.
Pal
, and
O. V.
Prezhdo
, “
Tuning charge transfer and recombination in exTTF/CNT nanohybrids by choice of chalcogen: A time-domain density functional analysis
,”
J. Appl. Phys.
129
,
025501
(
2021
).
9.
P. V.
Kamat
, “
Quantum dot solar cells. Semiconductor nanocrystals as light harvesters
,”
J. Phys. Chem. C
112
,
18737
18753
(
2008
).
10.
A.
Kongkanand
,
K.
Tvrdy
,
K.
Takechi
,
M.
Kuno
, and
P. V.
Kamat
, “
Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture
,”
J. Am. Chem. Soc.
130
,
4007
4015
(
2008
).
11.
Z.
Pan
,
H.
Rao
,
I.
Mora-Seró
,
J.
Bisquert
, and
X.
Zhong
, “
Quantum dot-sensitized solar cells
,”
Chem. Soc. Rev.
47
,
7659
7702
(
2018
).
12.
H.
Song
,
Y.
Lin
,
Z.
Zhang
,
H.
Rao
,
W.
Wang
,
Y.
Fang
,
Z.
Pan
, and
X.
Zhong
, “
Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition
,”
J. Am. Chem. Soc.
143
,
4790
4800
(
2021
).
13.
B.
Mandal
,
S.
Sarkar
, and
P.
Sarkar
, “
Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell
,”
J. Phys. Chem. C
119
,
3400
3407
(
2015
).
14.
M.
Kar
,
R.
Sarkar
,
S.
Pal
, and
P.
Sarkar
, “
Lead free two-dimensional mixed tin and germanium halide perovskites for photovoltaic applications
,”
J. Phys. Chem. C
125
,
74
81
(
2020
).
15.
S.
Saha
,
S.
Sarkar
,
S.
Pal
, and
P.
Sarkar
, “
Tuning the energy levels of ZnO/ZnS core/shell nanowires to design an efficient nanowire-based dye-sensitized solar cell
,”
J. Phys. Chem. C
117
,
15890
15900
(
2013
).
16.
S.
Sarkar
,
S.
Pal
, and
P.
Sarkar
, “
Electronic structure and band gap engineering of CdTe semiconductor nanowires
,”
J. Mater. Chem.
22
,
10716
10724
(
2012
).
17.
B.
Rajbanshi
,
S.
Sarkar
, and
P.
Sarkar
, “
Band gap engineering of graphene–CdTe quantum dot hybrid nanostructures
,”
J. Mater. Chem. C
2
,
8967
8975
(
2014
).
18.
S. A.
Svatek
,
C.
Bueno-Blanco
,
D. Y.
Lin
,
J.
Kerfoot
,
C.
Macías
,
M. H.
Zehender
,
I.
Tobías
,
P.
García-Linares
,
T.
Taniguchi
,
K.
Watanabe
,
P.
Beton
, and
E.
Antolín
, “
High open-circuit voltage in transition metal dichalcogenide solar cells
,”
Nano Energy
79
,
105427
(
2021
).
19.
S.
Das
,
D.
Pandey
,
J.
Thomas
, and
T.
Roy
, “
The role of graphene and other 2D materials in solar photovoltaics
,”
Adv. Mater.
31
,
1802722
(
2019
).
20.
B.
Xu
,
S.
Li
,
H.
Jiao
,
J.
Yin
,
Z.
Liu
, and
W.
Zhong
, “
A two-dimensional quinazoline based covalent organic framework with a suitable direct gap and superior optical absorption for photovoltaic applications
,”
J. Mater. Chem. A
8
,
3865
3871
(
2020
).
21.
J.
Cao
,
G.
Tang
, and
F.
Yan
, “
Applications of emerging metal and covalent organic frameworks in perovskite photovoltaics: Materials and devices
,”
Adv. Energy Mater.
14
,
2304027
(
2024
).
22.
J. M.
Cox
,
B.
Mileson
,
A.
Sadagopan
, and
S. A.
Lopez
, “
Molecular recognition and band alignment in 3D covalent organic frameworks for cocrystalline organic photovoltaics
,”
J. Phys. Chem. C
124
,
9126
9133
(
2020
).
23.
Z.
Meng
,
A.
Aykanat
, and
K. A.
Mirica
, “
Proton conduction in 2D aza-fused covalent organic frameworks
,”
Chem. Mater.
31
,
819
825
(
2018
).
24.
Q.
Zheng
,
W.
Chu
,
C.
Zhao
,
L.
Zhang
,
H.
Guo
,
Y.
Wang
,
X.
Jiang
, and
J.
Zhao
, “
Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems
,”
WIREs Comput. Mol. Sci.
9
,
e1411
(
2019
).
25.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
, “
Decoherence-induced surface hopping
,”
J. Chem. Phys.
137
,
22A545
(
2012
).
26.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction
,”
J. Chem. Theory Comput.
10
,
789
804
(
2014
).
27.
Z.
Zhang
,
W.-H.
Fang
,
M. V.
Tokina
,
R.
Long
, and
O. V.
Prezhdo
, “
Rapid decoherence suppresses charge recombination in multi-layer 2D halide perovskites: Time-domain ab initio analysis
,”
Nano Lett.
18
,
2459
2466
(
2018
).
28.
L.
Wang
,
A.
Akimov
, and
O. V.
Prezhdo
, “
Recent progress in surface hopping: 2011-2015
,”
J. Phys. Chem. Lett.
7
,
2100
2112
(
2016
).
29.
B. J.
Schwartz
,
E. R.
Bittner
,
O. V.
Prezhdo
, and
P. J.
Rossky
, “
Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
,”
J. Chem. Phys.
104
,
5942
5955
(
1996
).
30.
O. V.
Prezhdo
and
P. J.
Rossky
, “
Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems
,”
Phys. Rev. Lett.
81
,
5294
(
1998
).
31.
J. P.
Perdew
et al, “
Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
48
,
4978
(
1993
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
34.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
35.
J.
Moellmann
and
S.
Grimme
, “
DFT-D3 study of some molecular crystals
,”
J. Phys. Chem. C
118
,
7615
7621
(
2014
).
36.
M. K.
Shehab
,
K. S.
Weeraratne
,
T.
Huang
,
K. U.
Lao
, and
H. M.
El-Kaderi
, “
Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries
,”
ACS Appl. Mater. Interfaces
13
,
15083
15091
(
2021
).
37.
C.-F.
Fu
,
C.
Zhao
,
Q.
Zheng
,
X.
Li
,
J.
Zhao
, and
J.
Yang
, “
Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting
,”
Sci. China: Chem.
63
,
1134
1141
(
2020
).
38.
S.
Sannigrahi
,
A.
Ghosh
,
B.
Ball
, and
P.
Sarkar
, “
Exploring the Ti2CO2–WSe2 heterostructure as a direct Z-scheme photocatalyst for water splitting: A non-adiabatic study
,”
J. Phys. Chem. C
126
,
20852
20863
(
2022
).
39.
A.
Ghosh
,
B.
Goswami
,
S.
Pal
, and
P.
Sarkar
, “
How the stacking pattern influences the charge transfer dynamics of van der Waals heterostructures: An answer from a time-domain Ab initio study
,”
J. Phys. Chem. Lett.
14
,
7672
7679
(
2023
).
40.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
, “
Including quantum decoherence in surface hopping
,”
J. Chem. Phys.
133
,
134111
(
2010
).
41.
A.
Ghosh
,
B.
Ball
,
S.
Pal
, and
P.
Sarkar
, “
Ultrafast charge transfer and delayed recombination in graphitic-CN/WTe2 van der Waals heterostructure: A time domain ab initio study
,”
J. Phys. Chem. Lett.
13
,
7898
7905
(
2022
).

Supplementary Material

You do not currently have access to this content.