We determine the surface tension of aqueous electrolyte solutions in contact with non-polar dielectric media using a thermomechanical approach, which involves deriving the stress tensor from the thermodynamic potential of an inhomogeneous fluid. To obtain the surface tension, we calculate both the normal and tangential pressures using the components of the stress tensor, recently derived by us [Y. A. Budkov and P. E. Brandyshev, J. Chem. Phys. 159, 174103 (2023)] within the framework of Wang’s variational field theory. Using this approach, we derive an analytical expression for the surface tension in the linear approximation. At low ionic concentrations, this expression represents the classical Onsager–Samaras limiting law. By utilizing only one fitting parameter, which is related to the affinity of anions to the dielectric boundary, we successfully approximated experimental data on the surface tension of several aqueous electrolyte solutions. This approximation applies to both the solution–air and solution–dodecane interfaces, covering a wide range of electrolyte concentrations.

1.
C.
Wagner
, “
Die oberflächenspannung verdünnter elektrolytlösungen
,”
Phys. Z
25
,
474
477
(
1924
).
2.
L.
Onsager
and
N. N.
Samaras
, “
The surface tension of Debye-Hückel electrolytes
,”
J. Chem. Phys.
2
,
528
536
(
1934
).
3.
L. D.
Landau
,
J. S.
Bell
,
M.
Kearsley
,
L.
Pitaevskii
,
E.
Lifshitz
, and
J.
Sykes
,
Electrodynamics of Continuous Media
(
Elsevier
,
2013
), Vol.
8
.
4.
M.
Mucha
,
T.
Frigato
,
L. M.
Levering
,
H. C.
Allen
,
D. J.
Tobias
,
L. X.
Dang
, and
P.
Jungwirth
, “
Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions
,”
J. Phys. Chem. B
109
,
7617
(
2005
).
5.
C. J.
Fennell
,
A.
Bizjak
,
V.
Vlachy
, and
K. A.
Dill
, “
Ion pairing in molecular simulations of aqueous alkali halide solutions
,”
J. Phys. Chem. B
113
,
6782
6791
(
2009
).
6.
P.
Jungwirth
and
D. J.
Tobias
, “
Ions at the air/water interface
,”
J. Phys. Chem. B
106
,
6361
(
2002
).
7.
A.
Shchekin
and
V.
Borisov
, “
Thermodynamics of nucleation on the particles of salts-strong electrolytes: The allowance for ion adsorption in the droplet surface layer
,”
Colloid J.
67
,
774
787
(
2005
).
8.
B. W.
Ninham
and
V.
Yaminsky
, “
Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories
,”
Langmuir
13
,
2097
2108
(
1997
).
9.
B.
Ninham
,
K.
Kurihara
, and
O.
Vinogradova
, “
Hydrophobicity, specific ion adsorption and reactivity
,”
Colloids Surf., A
123–124
,
7
12
(
1997
).
10.
Y.
Levin
, “
Polarizable ions at interfaces
,”
Phys. Rev. Lett.
102
,
147803
(
2009
).
11.
Y.
Levin
,
A. P.
Dos Santos
, and
A.
Diehl
, “
Ions at the air-water interface: An end to a hundred-year-old mystery?
,”
Phys. Rev. Lett.
103
,
257802
(
2009
).
12.
A. P.
dos Santos
,
A.
Diehl
, and
Y.
Levin
, “
Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions
,”
Langmuir
26
,
10778
10783
(
2010
).
13.
A. P.
dos Santos
and
Y.
Levin
, “
Ions at the water–oil interface: Interfacial tension of electrolyte solutions
,”
Langmuir
28
,
1304
1308
(
2012
).
14.
T.
Markovich
,
D.
Andelman
, and
R.
Podgornik
, “
Surface tension of electrolyte solutions: A self-consistent theory
,”
Europhys. Lett.
106
,
16002
(
2014
).
15.
T.
Markovich
,
D.
Andelman
, and
R.
Podgornik
, “
Surface tension of electrolyte interfaces: Ionic specificity within a field-theory approach
,”
J. Chem. Phys.
142
,
044702
(
2015
).
16.
A.
Lau
and
J.
Sokoloff
, “
Enhancement of the ion concentration in a salt solution near a wall due to electrical image potentials and enhancement of surface tension due to the presence of salt
,”
Phys. Rev. E
102
,
052606
(
2020
).
17.
M. M.
Hatlo
and
L.
Lue
, “
The role of image charges in the interactions between colloidal particles
,”
Soft Matter
4
,
1582
1596
(
2008
).
18.
R.
Wang
and
Z.-G.
Wang
, “
Inhomogeneous screening near the dielectric interface
,”
J. Chem. Phys.
144
,
134902
(
2016
).
19.
D. S.
Dean
and
R. R.
Horgan
, “
Weak nonlinear surface-charging effects in electrolytic films
,”
Phys. Rev. E
68
,
051104
(
2003
).
20.
D. S.
Dean
and
R. R.
Horgan
, “
Field theoretic calculation of the surface tension for a model electrolyte system
,”
Phys. Rev. E
69
,
061603
(
2004
).
21.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Courier Corporation
,
2013
).
22.
B.
Derjaguin
,
N.
Churaev
, and
V.
Muller
, “
The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of stability of lyophobic colloids
,” in
Surface Forces
(
Springer
,
1987
), pp.
293
310
.
23.
J.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
24.
K.
Shi
,
E. R.
Smith
,
E. E.
Santiso
, and
K. E.
Gubbins
, “
A perspective on the microscopic pressure (stress) tensor: History, current understanding, and future challenges
,”
J. Chem. Phys.
158
,
040901
(
2023
).
25.
A. I.
Rusanov
and
A. K.
Shchekin
, “
The condition of mechanical equilibrium for a non-spherical interface between phases with a non-diagonal stress tensor
,”
Colloids Surf., A
192
,
357
362
(
2001
).
26.
A.
Rusanov
,
A.
Shchekin
, and
V.
Varshavskii
, “
Three-dimensional aspect of the surface tension: An approach based on the total pressure tensor
,”
Colloid J.
63
,
365
375
(
2001
).
27.
Y. A.
Budkov
and
A. L.
Kolesnikov
, “
Modified Poisson–Boltzmann equations and macroscopic forces in inhomogeneous ionic fluids
,”
J. Stat. Mech.: Theory Exp.
2022
,
053205
.
28.
P. E.
Brandyshev
and
Y. A.
Budkov
, “
Noether’s second theorem and covariant field theory of mechanical stresses in inhomogeneous ionic liquids
,”
J. Chem. Phys.
158
,
174114
(
2023
).
29.
Y. A.
Budkov
and
N. N.
Kalikin
, “
Macroscopic forces in inhomogeneous polyelectrolyte solutions
,”
Phys. Rev. E
107
,
024503
(
2023
).
30.
V. A.
Vasileva
,
D. A.
Mazur
, and
Y. A.
Budkov
, “
Theory of electrolyte solutions in a slit charged pore: Effects of structural interactions and specific adsorption of ions
,”
J. Chem. Phys.
159
,
024709
(
2023
).
31.
Y. A.
Budkov
and
N. N.
Kalikin
, “
Dielectric mismatch effects on polyelectrolyte solutions in electrified nanopores: Insights from mean-field theory
,”
Polym. Sci., Ser. C
65
,
46
(
2023
).
32.
Y. A.
Budkov
and
P. E.
Brandyshev
, “
Variational field theory of macroscopic forces in Coulomb fluids
,”
J. Chem. Phys.
159
,
174103
(
2023
).
33.
P. E.
Brandyshev
and
Y. A.
Budkov
, “
Statistical field theory of mechanical stresses in Coulomb fluids: General covariant approach vs Noether’s theorem
,”
J. Stat. Mech.: Theory Exp.
2023
,
123206
.
34.
S.
Hermann
and
M.
Schmidt
, “
Why Noether’s theorem applies to statistical mechanics
,”
J. Phys.: Condens. Matter
34
,
213001
(
2022
).
35.
Z.-G.
Wang
, “
Fluctuation in electrolyte solutions: The self energy
,”
Phys. Rev. E
81
,
021501
(
2010
).
36.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
The general theory of van der Waals forces
,”
Adv. Phys.
10
,
165
209
(
1961
).
37.
T.
Markovich
,
D.
Andelman
, and
R.
Podgornik
, “
Surface tension of acid solutions: Fluctuations beyond the nonlinear Poisson–Boltzmann theory
,”
Langmuir
33
,
34
44
(
2017
).
38.
E.
Nightingale
, Jr.
, “
Phenomenological theory of ion solvation. effective radii of hydrated ions
,”
J. Phys. Chem.
63
,
1381
1387
(
1959
).
39.
N.
Matubayasi
,
Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions
(
CRC Press
,
2013
).
40.
R.
Aveyard
and
S. M.
Saleem
, “
Interfacial tensions at alkane-aqueous electrolyte interfaces
,”
J. Chem. Soc., Faraday Trans. 1
72
,
1609
1617
(
1976
).
41.
R.
Wang
and
Z.-G.
Wang
, “
On the theoretical description of weakly charged surfaces
,”
J. Chem. Phys.
142
,
104705
(
2015
).
42.
J.
Urbanija
,
K.
Bohinc
,
A.
Bellen
,
S.
Maset
,
A.
Iglič
,
V.
Kralj-Iglič
, and
P.
Sunil Kumar
, “
Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution
,”
J. Chem. Phys.
129
,
105101
(
2008
).
43.
S.
Kondrat
,
G.
Feng
,
F.
Bresme
,
M.
Urbakh
, and
A. A.
Kornyshev
, “
Theory and simulations of ionic liquids in nanoconfinement
,”
Chem. Rev.
123
,
6668
6715
(
2023
).
44.
Y. A.
Budkov
and
A. L.
Kolesnikov
, “
Electric double layer theory for room temperature ionic liquids on charged electrodes: Milestones and prospects
,”
Curr. Opin. Electrochem.
33
,
100931
(
2022
).
45.
E.
Gongadze
and
A.
Iglič
, “
Decrease of permittivity of an electrolyte solution near a charged surface due to saturation and excluded volume effects
,”
Bioelectrochemistry
87
,
199
203
(
2012
).
46.
E.
Gongadze
,
A.
Velikonja
,
Š.
Perutkova
,
P.
Kramar
,
A.
Maček-Lebar
,
V.
Kralj-Iglič
, and
A.
Iglič
, “
Ions and water molecules in an electrolyte solution in contact with charged and dipolar surfaces
,”
Electrochim. Acta
126
,
42
60
(
2014
).
47.
A.
Marcovitz
,
A.
Naftaly
, and
Y.
Levy
, “
Water organization between oppositely charged surfaces: Implications for protein sliding along DNA
,”
J. Chem. Phys.
142
,
085102
(
2015
).
48.
Y. A.
Budkov
,
A. L.
Kolesnikov
,
Z. A.
Goodwin
,
M. G.
Kiselev
, and
A. A.
Kornyshev
, “
Theory of electrosorption of water from ionic liquids
,”
Electrochim. Acta
284
,
346
354
(
2018
).
49.
A. V.
Dubtsov
,
S. V.
Pasechnik
,
D. V.
Shmeliova
,
A. S.
Saidgaziev
,
E.
Gongadze
,
A.
Iglič
, and
S.
Kralj
, “
Liquid crystalline droplets in aqueous environments: Electrostatic effects
,”
Soft Matter
14
,
9619
9630
(
2018
).
50.
A.
Abrashkin
,
D.
Andelman
, and
H.
Orland
, “
Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces
,”
Phys. Rev. Lett.
99
,
077801
(
2007
).
51.
C.
Cruz
,
S.
Kondrat
,
E.
Lomba
, and
A.
Ciach
, “
Effect of proximity to ionic liquid-solvent demixing on electrical double layers
,”
J. Mol. Liq.
294
,
111368
(
2019
).
52.
C.
Cruz
and
A.
Ciach
, “
Phase transitions and electrochemical properties of ionic liquids and ionic liquid-solvent mixtures
,”
Molecules
26
,
3668
(
2021
).
53.
R.
Blossey
,
A.
Maggs
, and
R.
Podgornik
, “
Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations
,”
Phys. Rev. E
95
,
060602
(
2017
).
You do not currently have access to this content.