This study presents a population balance model for the kinetics of nucleation and growth in covalent organic framework (COF) synthesis. The model incorporates second-order nucleation and first-order growth rates, consistent with proposals in the literature. Despite having non-linear terms, an implicit analytic solution is derived and then converted to explicit solutions for the monomer concentration and size distribution of COF flakes as a function of time. For experimental definitions of the induction time and the initial growth rate based on yield (y) vs time (t) curves, the model predicts power-law relationships: tind=0.409kN1/3kG2/3cA01 and dy/dtmax=0.965kN1/3kG2/3cA0, respectively. We discuss the implications for the interpretation of Arrhenius plots. We also discuss key discrepancies with experiments, including the predicted attainment of 100% yield instead of 30%–40% as observed and the value of the yield at the inflection point in the yield vs time curve. We suggest extensions to the model, including nucleation and growth kinetics with equilibrium solubility limitations and two-dimensional nucleation for the formation of multilayer COF particles.

1.
J. W.
Colson
and
W. R.
Dichtel
, “
Rationally synthesized two-dimensional polymers
,”
Nat. Chem.
5
,
453
465
(
2013
).
2.
A. P.
Côté
,
A. I.
Benin
,
N. W.
Ockwig
,
M.
O’Keeffe
,
A. J.
Matzger
, and
O. M.
Yaghi
, “
Porous, crystalline, covalent organic frameworks
,”
Science
310
,
1164
1166
(
2005
).
3.
M. S.
Lohse
and
T.
Bein
, “
Covalent organic frameworks: Structures, synthesis, and applications
,”
Adv. Funct. Mater.
28
,
1705553
(
2018
).
4.
X.
Ma
and
T. F.
Scott
, “
Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks
,”
Commun. Chem.
1
,
98
(
2018
).
5.
H. S.
Sasmal
,
A.
Kumar Mahato
,
P.
Majumder
, and
R.
Banerjee
, “
Landscaping covalent organic framework nanomorphologies
,”
J. Am. Chem. Soc.
144
,
11482
11498
(
2022
).
6.
B. J.
Smith
,
L. R.
Parent
,
A. C.
Overholts
,
P. A.
Beaucage
,
R. P.
Bisbey
,
A. D.
Chavez
,
N.
Hwang
,
C.
Park
,
A. M.
Evans
,
N. C.
Gianneschi
, and
W. R.
Dichtel
, “
Colloidal covalent organic frameworks
,”
ACS Cent. Sci.
3
,
58
65
(
2017
).
7.
S. Y.
Ding
and
W.
Wang
, “
Covalent organic frameworks (COFs): From design to applications
,”
Chem. Soc. Rev.
42
,
548
568
(
2013
).
8.
H.
Li
,
A. D.
Chavez
,
H.
Li
,
H.
Li
,
W. R.
Dichtel
, and
J. L.
Bredas
, “
Nucleation and growth of covalent organic frameworks from solution: The example of COF-5
,”
J. Am. Chem. Soc.
139
,
16310
16318
(
2017
).
9.
W.
Ji
,
D. M.
Kim
,
B. M.
Posson
,
K. J.
Carlson
,
A. C.
Chew
,
A. J.
Chew
,
M.
Hossain
,
A. F.
Mojica
,
S. M.
Ottoes
,
D. V.
Tran
,
M. W.
Greenberg
, and
L. S.
Hamachi
, “
COF-300 synthesis and colloidal stabilization with substituted benzoic acids
,”
RSC Adv.
13
,
14484
14493
(
2023
).
10.
H.
Xu
,
J.
Gao
, and
D.
Jiang
, “
Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts
,”
Nat. Chem.
7
,
905
912
(
2015
).
11.
S.
Lin
,
C.
Diercks
,
Y.-B.
Zhang
,
N.
Kornienko
,
E.
Nichols
,
Y.
Zhao
,
A.
Paris
,
D.
Kim
,
P.
Yang
,
O.
Yaghi
, and
C.
Chang
, “
Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water
,”
Science
349
,
1205
1208
(
2015
).
12.
A.
Altaf
,
N.
Baig
,
M.
Sohail
,
M.
Sher
,
A.
Ul-Hamid
, and
M.
Altaf
, “
Covalent organic frameworks: Advances in synthesis and applications
,”
Mater. Today Commun.
28
,
102612
(
2021
).
13.
X. H.
Liu
,
C. Z.
Guan
,
D.
Wang
, and
L. J.
Wan
, “
Graphene-like single-layered covalent organic frameworks: Synthesis strategies and application prospects
,”
Adv. Mater.
26
,
6912
6920
(
2014
).
14.
D. F.
Perepichka
and
F.
Rosei
, “
Extending polymer conjugation into the second dimension
,”
Science
323
,
216
217
(
2009
).
15.
R.
Gutzler
and
D. F.
Perepichka
, “
π-electron conjugation in two dimensions
,”
J. Am. Chem. Soc.
135
,
16585
16594
(
2013
).
16.
C. R.
Mulzer
,
L.
Shen
,
R. P.
Bisbey
,
J. R.
McKone
,
N.
Zhang
,
H. D.
Abruña
, and
W. R.
Dichtel
, “
Superior charge storage and power density of a conducting polymer-modified covalent organic framework
,”
ACS Cent. Sci.
2
,
667
673
(
2016
).
17.
C. R.
Deblase
,
K. E.
Silberstein
,
T. T.
Truong
,
H. D.
Abruña
, and
W. R.
Dichtel
, “
β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage
,”
J. Am. Chem. Soc.
135
,
16821
16824
(
2013
).
18.
D.
Zhu
,
G.
Xu
,
M.
Barnes
,
Y.
Li
,
C. P.
Tseng
,
Z.
Zhang
,
J. J.
Zhang
,
Y.
Zhu
,
S.
Khalil
,
M. M.
Rahman
,
R.
Verduzco
, and
P. M.
Ajayan
, “
Covalent organic frameworks for batteries
,”
Adv. Funct. Mater.
31
,
2100505
(
2021
).
19.
K.
Dey
,
M.
Pal
,
K. C.
Rout
,
S.
Kunjattu H
,
A.
Das
,
R.
Mukherjee
,
U. K.
Kharul
, and
R.
Banerjee
, “
Selective molecular separation by interfacially crystallized covalent organic framework thin films
,”
J. Am. Chem. Soc.
139
,
13083
13091
(
2017
).
20.
Q.
Hao
,
C.
Zhao
,
B.
Sun
,
C.
Lu
,
J.
Liu
,
M.
Liu
,
L. J.
Wan
, and
D.
Wang
, “
Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer
,”
J. Am. Chem. Soc.
140
,
12152
12158
(
2018
).
21.
M.
Matsumoto
,
L.
Valentino
,
G. M.
Stiehl
,
H. B.
Balch
,
A. R.
Corcos
,
F.
Wang
,
D. C.
Ralph
,
B. J.
Mariñas
, and
W. R.
Dichtel
, “
Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films
,”
Chem
4
,
308
317
(
2018
).
22.
X.
Feng
,
X.
Ding
, and
D.
Jiang
, “
Covalent organic frameworks
,”
Chem. Soc. Rev.
41
,
6010
6022
(
2012
).
23.
A. M.
Evans
,
M. J.
Strauss
,
A. R.
Corcos
,
Z.
Hirani
,
W.
Ji
,
L. S.
Hamachi
,
X.
Aguilar-Enriquez
,
A. D.
Chavez
,
B. J.
Smith
, and
W. R.
Dichtel
, “
Two-dimensional polymers and polymerizations
,”
Chem. Rev.
122
,
442
564
(
2022
).
24.
S.
Wang
,
Z.
Zhang
,
H.
Zhang
,
A. G.
Rajan
,
N.
Xu
,
Y.
Yang
,
Y.
Zeng
,
P.
Liu
,
X.
Zhang
,
Q.
Mao
,
Y.
He
,
J.
Zhao
,
B. G.
Li
,
M. S.
Strano
, and
W. J.
Wang
, “
Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films
,”
Matter
1
,
1592
1605
(
2019
).
25.
D.
Rodríguez-San-Miguel
,
C.
Montoro
, and
F.
Zamora
, “
Covalent organic framework nanosheets: Preparation, properties and applications
,”
Chem. Soc. Rev.
49
,
2291
2302
(
2020
).
26.
Z.
Zhang
,
L.
Zhang
,
X.
Wang
,
T.
Wang
,
C.
Cheng
, and
X.
Liu
, “
Micro/nano-scaled covalent organic frameworks: Polymerization, crystallization and self-assembly
,”
Chem. Nano. Mat.
8
,
e202100345
(
2022
).
27.
S. T.
Emmerling
,
L. S.
Germann
,
P. A.
Julien
,
I.
Moudrakovski
,
M.
Etter
,
T.
Friščić
,
R. E.
Dinnebier
, and
B. V.
Lotsch
, “
In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive
,”
Chem
7
,
1639
1652
(
2021
).
28.
A.
Natraj
,
W.
Ji
,
J.
Xin
,
I.
Castano
,
D. W.
Burke
,
A. M.
Evans
,
M. J.
Strauss
,
M.
Ateia
,
L. S.
Hamachi
,
N. C.
Gianneschi
,
Z. A.
Alothman
,
J.
Sun
,
K.
Yusuf
, and
W. R.
Dichtel
, “
Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently
,”
J. Am. Chem. Soc.
144
,
19813
19824
(
2022
).
29.
S.
Karthika
,
T. K.
Radhakrishnan
, and
P.
Kalaichelvi
, “
A review of classical and nonclassical nucleation theories
,”
Cryst. Growth Des.
16
,
6663
6681
(
2016
).
30.
J. W.
Mullin
,
Crystallization
, 4th ed. (
Butterworth-Heinemann
,
Oxford
,
2001
).
31.
V.
Agarwal
and
B.
Peters
, “
Solute precipitate nucleation: A review of theory and simulation advances
,”
Adv. Chem. Phys.
155
,
97
159
(
2014
).
32.
D.
Kashchiev
and
G. M.
Van Rosmalen
, “
Review: Nucleation in solutions revisited
,”
Cryst. Res. Technol.
38
,
555
574
(
2003
).
33.
C.
Feriante
,
A. M.
Evans
,
S.
Jhulki
,
I.
Castano
,
M. J.
Strauss
,
S.
Barlow
,
W. R.
Dichtel
, and
S. R.
Marder
, “
New mechanistic insights into the formation of imine-linked two-dimensional covalent organic frameworks
,”
J. Am. Chem. Soc.
142
,
18637
18644
(
2020
).
34.
C.
Kang
,
K.
Yang
,
Z.
Zhang
,
A. K.
Usadi
,
D. C.
Calabro
,
L. S.
Baugh
,
Y.
Wang
,
J.
Jiang
,
X.
Zou
,
Z.
Huang
, and
D.
Zhao
, “
Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study
,”
Nat. Commun.
13
,
1370
(
2022
).
35.
B. J.
Smith
and
W. R.
Dichtel
, “
Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions
,”
J. Am. Chem. Soc.
136
,
8783
8789
(
2014
).
36.
A. M.
Evans
,
L. R.
Parent
,
N. C.
Flanders
,
R. P.
Bisbey
,
E.
Vitaku
,
M. S.
Kirschner
,
R. D.
Schaller
,
L. X.
Chen
,
N. C.
Gianneschi
, and
W. R.
Dichtel
, “
Seeded growth of single-crystal two-dimensional covalent organic frameworks
,”
Science
361
,
52
57
(
2018
).
37.
Y.
Li
,
W.
Chen
,
G.
Xing
,
D.
Jiang
, and
L.
Chen
, “
New synthetic strategies toward covalent organic frameworks
,”
Chem. Soc. Rev.
49
,
2852
2868
(
2020
).
38.
A. V.
Dighe
,
R. R.
Bhawnani
,
P. K. R.
Podupu
,
N. K.
Dandu
,
A. T.
Ngo
,
S.
Chaudhuri
, and
M. R.
Singh
, “
Microkinetic insights into the role of catalyst and water activity on the nucleation, growth, and dissolution during COF-5 synthesis
,”
Nanoscale
15
,
9329
9338
(
2023
).
39.
Y. L.
Zhu
,
H. Y.
Zhao
,
C. L.
Fu
,
Z. W.
Li
,
Z. Y.
Sun
, and
Z.
Lu
, “
Mechanisms of defect correction by reversible chemistries in covalent organic frameworks
,”
J. Phys. Chem. Lett.
11
,
9952
9956
(
2020
).
40.
H.
Li
,
A. M.
Evans
,
W. R.
Dichtel
, and
J. L.
Bredas
, “
Quantitative description of the lateral growth of two-dimensional covalent organic frameworks reveals self-templation effects
,”
ACS Mater. Lett.
3
,
398
405
(
2021
).
41.
I.
Castano
,
A. M.
Evans
,
H.
Li
,
E.
Vitaku
,
M. J.
Strauss
,
J. L.
Brédas
,
N. C.
Gianneschi
, and
W. R.
Dichtel
, “
Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks
,”
ACS Cent. Sci.
5
,
1892
1899
(
2019
).
42.
V.
Nguyen
and
M.
Grünwald
, “
Microscopic origins of poor crystallinity in the synthesis of covalent organic framework COF-5
,”
J. Am. Chem. Soc.
140
,
3306
3311
(
2018
).
43.
J. D.
Robson
, “
Modelling the evolution of particle size distribution during nucleation, growth and coarsening
,”
Mater. Sci. Technol.
20
,
441
448
(
2004
).
44.
B. T.
Koo
,
R. F.
Heden
, and
P.
Clancy
, “
Nucleation and growth of 2D covalent organic frameworks: Polymerization and crystallization of COF monomers
,”
Phys. Chem. Chem. Phys.
19
,
9745
9754
(
2017
).
45.
R. L.
Li
,
N. C.
Flanders
,
A. M.
Evans
,
W.
Ji
,
I.
Castano
,
L. X.
Chen
,
N. C.
Gianneschi
, and
W. R.
Dichtel
, “
Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles
,”
Chem. Sci.
10
,
3796
3801
(
2019
).
46.
D.
Ramkrishna
,
Theory and Applications to Particulate Systems Engineering
(
2002
).
47.
B.
Abécassis
,
M. W.
Greenberg
,
V.
Bal
,
B. M.
McMurtry
,
M. P.
Campos
,
L.
Guillemeney
,
B.
Mahler
,
S.
Prevost
,
L.
Sharpnack
,
M. P.
Hendricks
,
D.
DeRosha
,
E.
Bennett
,
N.
Saenz
,
B.
Peters
, and
J. S.
Owen
, “
Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
,”
Chem. Sci.
13
,
4977
4983
(
2022
).
48.
G. M.
Maggioni
and
M.
Mazzotti
, “
A stochastic population balance equation model for nucleation and growth of crystals with multiple polymorphs
,”
Cryst. Growth Des.
19
,
4698
4709
(
2019
).
49.
M. J.
Hounslow
,
R. L.
Ryall
, and
V. R.
Marshall
, “
A discretized population balance for nucleation, growth, and aggregation
,”
AIChE J.
34
,
1821
1832
(
1988
).
50.
Y.
Kim
,
Y.
Kawajiri
,
R. W.
Rousseau
, and
M. A.
Grover
, “
Modeling of nucleation, growth, and dissolution of paracetamol in ethanol solution for unseeded batch cooling crystallization with temperature-cycling strategy
,”
Ind. Eng. Chem. Res.
62
,
2866
2881
(
2023
).
51.
Z.
Hens
and
J.
De Roo
, “
Atomically precise nanocrystals
,”
J. Am. Chem. Soc.
142
(
37
),
15627
15637
(
2020
).
52.
T.
Aubert
,
A. A.
Golovatenko
,
M.
Samoli
,
L.
Lermusiaux
,
T.
Zinn
,
B.
Abécassis
,
A. V.
Rodina
, and
Z.
Hens
, “
General expression for the size-dependent optical properties of quantum dots
,”
Nano Lett.
22
(
4
),
1778
1785
(
2022
).
53.
P. T.
Prins
,
F.
Montanarella
,
K.
Dümbgen
,
Y.
Justo
,
J. C.
van der Bok
,
S.
Hinterding
,
J.
Geuchies
,
J.
Maes
,
K.
De Nolf
,
S.
Deelen
,
H.
Meijer
,
T.
Zinn
,
A.
Petukhov
,
F.
Rabouw
,
C.
de Mello Donega
,
D.
Vanmaekelbergh
, and
Z.
Hens
, “
Extended nucleation and superfocusing in colloidal semiconductor nanocrystal synthesis
,”
Nano Lett.
21
(
6
),
2487
2496
(
2021
).
54.
V.
Bal
and
B.
Peters
, “
Coupled population balance and species balance models of crystallization: Analytic solutions and data fits
,”
Cryst. Growth Des.
21
(
1
),
227
234
(
2021
).
55.
D. V.
Talapin
,
A. L.
Rogach
,
M.
Haase
, and
H.
Weller
, “
Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study
,”
J. Phys. Chem. B
105
(
49
),
12278
12285
(
2001
).
56.
C.
Wagner
, “
Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung)
,”
Z. Elektrochemie, Ber. Bunsengesellschaft Phys. Chem.
65
(
7–8
),
581
591
(
1961
).
57.
I. M.
Lifshitz
and
V. V.
Slyozov
, “
The kinetics of precipitation from supersaturated solid solutions
,”
J. Phys. Chem. Solids
19
,
35
(
1961
).
58.
H.
Li
,
A. M.
Evans
,
I.
Castano
,
M. J.
Strauss
,
W. R.
Dichtel
, and
J. L.
Bredas
, “
Nucleation-elongation dynamics of two-dimensional covalent organic frameworks
,”
J. Am. Chem. Soc.
142
,
1367
1374
(
2020
).
59.
D.
Zhu
,
L. B.
Alemany
,
W.
Guo
, and
R.
Verduzco
, “
Enhancement of crystallinity of imine-linked covalent organic frameworks: Via aldehyde modulators
,”
Polym. Chem.
11
,
4464
4468
(
2020
).
60.
D.
Zhu
,
Y.
Zhu
,
Y.
Chen
,
Q.
Yan
,
H.
Wu
,
C. Y.
Liu
,
X.
Wang
,
L. B.
Alemany
,
G.
Gao
,
T. P.
Senftle
,
Y.
Peng
,
X.
Wu
, and
R.
Verduzco
, “
Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers
,”
Nat. Commun.
14
,
2865
(
2023
).
61.
B. P.
Biswal
,
H. D.
Chaudhari
,
R.
Banerjee
, and
U. K.
Kharul
, “
Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation
,”
Chem. - Eur. J.
22
,
4695
4699
(
2016
).
62.
G.
Shreeraj
,
A.
Sah
,
S.
Sarkar
,
A.
Giri
,
A.
Sahoo
, and
A.
Patra
, “
Structural modulation of nitrogen-rich covalent organic frameworks for iodine capture
,”
Langmuir
39
,
16069
16078
(
2023
).
63.
N.
Yang
,
Y.
Gu
,
Y.
Shan
,
C.
Tian
,
L.
Yang
,
H.
Jiang
,
H.
Liu
,
X.
Zhu
, and
S.
Dai
, “
Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage
,”
ACS Macro Lett.
11
,
60
65
(
2022
).
64.
M.
Fanfoni
and
M.
Tomellini
, “
The Johnson-Mehl-Avrami-Kohnogorov model: A brief review
,”
Il Nuovo Cimento D
20
,
1171
1182
(
1998
).
65.
K.
Shirzad
and
C.
Viney
, “
A critical review on applications of the Avrami equation beyond materials science
,”
J. R. Soc., Interface
20
,
20230242
(
2023
).
You do not currently have access to this content.