An exciton–phonon (ex–ph) model based on our recently developed block interaction product basis framework is introduced to simulate the distal charge separation (CS) process in aggregated perylenediimide (PDI) trimer incorporating the quantum dynamic method, i.e., the time-dependent density matrix renormalization group. The electronic Hamiltonian in the ex–ph model is represented by nine constructed diabatic states, which include three local excited (LE) states and six charge transfer (CT) states from both the neighboring and distal chromophores. These diabatic states are automatically generated from the direct products of the leading localized neutral or ionic states of each chromophore’s reduced density matrix, which are obtained from ab initio quantum chemical calculation of the subsystem consisting of the targeted chromophore and its nearest neighbors, thus considering the interaction of the adjacent environment. In order to quantum-dynamically simulate the distal CS process with massive coupled vibrational modes in molecular aggregates, we used our recently proposed hierarchical mapping approach to renormalize these modes and truncate those vibrational modes that are not effectively coupled with electronic states accordingly. The simulation result demonstrates that the formation of the distal CS process undergoes an intermediate state of adjacent CT, i.e., starts from the LE states, passes through an adjacent CT state to generate the intermediates (200 fs), and then formalizes the targeted distal CS via further charge transference (1 ps). This finding agrees well with the results observed in the experiment, indicating that our scheme is capable of quantitatively investigating the CS process in a realistic aggregated PDI trimer and can also be potentially applied to exploring CS and other photoinduced processes in larger systems.

1.
E.
Romero
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
, “
Quantum design of photosynthesis for bio-inspired solar-energy conversion
,”
Nature
543
,
355
365
(
2017
).
2.
M. H.
Vos
,
F.
Rappaport
,
J.-C.
Lambry
,
J.
Breton
, and
J.-L.
Martin
, “
Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy
,”
Nature
363
,
320
325
(
1993
).
3.
A. N.
Bartynski
,
M.
Gruber
,
S.
Das
,
S.
Rangan
,
S.
Mollinger
,
C.
Trinh
,
S. E.
Bradforth
,
K.
Vandewal
,
A.
Salleo
,
R. A.
Bartynski
,
W.
Bruetting
, and
M. E.
Thompson
, “
Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics
,”
J. Am. Chem. Soc.
137
,
5397
5405
(
2015
).
4.
C. L.
Kufner
,
S.
Crucilla
,
D.
Ding
,
P.
Stadlbauer
,
J.
Šponer
,
J. W.
Szostak
,
D. D.
Sasselov
, and
R.
Szabla
, “
Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern
,”
Chem. Sci.
15
,
2158
(
2024
).
5.
N.
Pearce
,
K. E. A.
Reynolds
,
S.
Kayal
,
X. Z.
Sun
,
E. S.
Davies
,
F.
Malagreca
,
C. J.
Schürmann
,
S.
Ito
,
A.
Yamano
,
S. P.
Argent
,
M. W.
George
, and
N. R.
Champness
, “
Selective photoinduced charge separation in perylenediimide-pillar[5]arene rotaxanes
,”
Nat. Commun.
13
,
415
(
2022
).
6.
C.
Lin
,
T.
Kim
,
J. D.
Schultz
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate
,”
Nat. Chem.
14
,
786
793
(
2022
).
7.
H.-G.
Duan
,
V. I.
Prokhorenko
,
E.
Wientjes
,
R.
Croce
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Primary charge separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra
,”
Sci. Rep.
7
,
12347
(
2017
).
8.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics
,”
Chem. Rev.
118
,
7026
7068
(
2018
).
9.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
2287
(
2020
).
10.
A.
Sisto
,
D. R.
Glowacki
, and
T. J.
Martinez
, “
Ab initio nonadiabatic dynamics of multichromophore complexes: A scalable graphical-processing-unit-accelerated exciton framework
,”
Acc. Chem. Res.
47
,
2857
2866
(
2014
).
11.
D. R.
Yarkony
, “
Nonadiabatic quantum chemistry—Past, present, and future
,”
Chem. Rev.
112
,
481
498
(
2012
).
12.
T.
Yonehara
,
K.
Hanasaki
, and
K.
Takatsuka
, “
Fundamental approaches to nonadiabaticity: Toward a chemical theory beyond the Born–Oppenheimer paradigm
,”
Chem. Rev.
112
,
499
542
(
2012
).
13.
P.
Ehrenfest
, “
Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik
,”
Z. Phys.
45
,
455
457
(
1927
).
14.
S.-I.
Sawada
,
A.
Nitzan
, and
H.
Metiu
, “
Mean-trajectory approximation for charge- and energy-transfer processes at surfaces
,”
Phys. Rev. B
32
,
851
867
(
1985
).
15.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
16.
J. C.
Tully
and
R. K.
Preston
, “
Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2
,”
J. Chem. Phys.
55
,
562
572
(
1971
).
17.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface
,”
J. Am. Chem. Soc.
136
,
1599
1608
(
2014
).
18.
X.-Y.
Liu
,
Z.-W.
Li
,
W.-H.
Fang
, and
G.
Cui
, “
Nonadiabatic exciton and charge separation dynamics at interfaces of zinc phthalocyanine and fullerene: Orientation does matter
,”
J. Phys. Chem. A
124
,
7388
7398
(
2020
).
19.
D.
Mao
,
X.-R.
Chen
,
D.-H.
Li
,
X.-Y.
Liu
,
G.
Cui
, and
L.
Li
, “
Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: A nonadiabatic dynamics simulation with optimally tuned range-separated functional
,”
Phys. Chem. Chem. Phys.
24
,
27173
27183
(
2022
).
20.
X.-Y.
Xie
,
X.-Y.
Liu
,
W.-H.
Fang
, and
G.
Cui
, “
Insights into photoinduced carrier dynamics and hydrogen evolution reaction of organic PM6/PCBM heterojunctions
,”
J. Mater. Chem. A
10
,
24529
24537
(
2022
).
21.
D.
Mester
and
M.
Kállay
, “
Reduced-scaling approach for configuration interaction singles and time-dependent density functional theory calculations using hybrid functionals
,”
J. Chem. Theory Comput.
15
,
1690
1704
(
2019
).
22.
K.
Wang
,
G.
Shao
,
S.
Peng
,
X.
You
,
X.
Chen
,
J.
Xu
,
H.
Huang
,
H.
Wang
,
D.
Wu
, and
J.
Xia
, “
Achieving symmetry-breaking charge separation in perylenediimide trimers: The effect of bridge resonance
,”
J. Phys. Chem. B
126
,
3758
3767
(
2022
).
23.
Y.
Wu
,
R. M.
Young
,
M.
Frasconi
,
S. T.
Schneebeli
,
P.
Spenst
,
D. M.
Gardner
,
K. E.
Brown
,
F.
Würthner
,
J. F.
Stoddart
, and
M. R.
Wasielewski
, “
Ultrafast photoinduced symmetry-breaking charge separation and electron sharing in perylenediimide molecular triangles
,”
J. Am. Chem. Soc.
137
,
13236
13239
(
2015
).
24.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. D.
Meyer
, “
The multiconfiguration time-dependent hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
25.
A.
Raab
,
I.
Burghardt
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree method generalized to the propagation of density operators
,”
J. Chem. Phys.
111
,
8759
8772
(
1999
).
26.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
, “
Time-evolution methods for matrix-product states
,”
Ann. Phys.
411
,
167998
(
2019
).
27.
J.
Ren
,
W.
Li
,
T.
Jiang
,
Y.
Wang
, and
Z.
Shuai
, “
Time-dependent density matrix renormalization group method for quantum dynamics in complex systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1614
(
2022
).
28.
S. R.
White
and
A. E.
Feiguin
, “
Real-time evolution using the density matrix renormalization group
,”
Phys. Rev. Lett.
93
,
076401
(
2004
).
29.
Y.
Xu
,
Y.
Cheng
,
Y.
Song
, and
H.
Ma
, “
New density matrix renormalization group approaches for strongly correlated systems coupled with large environments
,”
J. Chem. Theory Comput.
19
,
4781
4795
(
2023
).
30.
X.
Chang
,
M.
Balooch Qarai
, and
F. C.
Spano
, “
Absorption and photoluminescence in π-stacks of donor–acceptor–donor chromophores: Effective Frenkel–Holstein Hamiltonian approach
,”
Chem. Mater.
35
,
10018
10029
(
2023
).
31.
S. M.
Janke
,
M. B.
Qarai
,
V.
Blum
, and
F. C.
Spano
, “
Frenkel–Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid organic–inorganic perovskites
,”
J. Chem. Phys.
152
,
144702
(
2020
).
32.
S.
Feng
,
Y.-C.
Wang
,
Y.
Ke
,
W.
Liang
, and
Y.
Zhao
, “
Effect of charge-transfer states on the vibrationally resolved absorption spectra and exciton dynamics in ZnPc aggregates: Simulations from a non-Makovian stochastic Schrödinger equation
,”
J. Chem. Phys.
153
,
034116
(
2020
).
33.
S.
Feng
,
Y.
Zhao
, and
W.
Liang
, “
Substituent effect on vibrationally resolved absorption spectra and exciton dynamics of dipyrrolonaphthyridinedione aggregates
,”
J. Phys. Chem. A
126
,
6395
6406
(
2022
).
34.
H.
Zang
,
Y.
Zhao
, and
W.
Liang
, “
Quantum interference in singlet fission: J- and H-aggregate behavior
,”
J. Phys. Chem. Lett.
8
,
5105
5112
(
2017
).
35.
B.
Zhang
,
Y.
Zhao
, and
W.
Liang
, “
Joint effects of exciton–exciton and exciton–photon couplings on the singlet fission dynamics in organic aggregates
,”
J. Phys. Chem. C
125
,
1654
1664
(
2021
).
36.
J.
Aragó
and
A.
Troisi
, “
Dynamics of the excitonic coupling in organic crystals
,”
Phys. Rev. Lett.
114
,
026402
(
2015
).
37.
T.
Nematiaram
,
D.
Padula
, and
A.
Troisi
, “
Bright Frenkel excitons in molecular crystals: A survey
,”
Chem. Mater.
33
,
3368
3378
(
2021
).
38.
X.
Xie
,
A.
Santana-Bonilla
,
W.
Fang
,
C.
Liu
,
A.
Troisi
, and
H.
Ma
, “
Exciton–phonon interaction model for singlet fission in prototypical molecular crystals
,”
J. Chem. Theory Comput.
15
,
3721
3729
(
2019
).
39.
S.
Jiang
,
Y.
Xie
, and
Z.
Lan
, “
The role of the charge-transfer states in the ultrafast excitonic dynamics of the DTDCTB dimers embedded in a crystal environment
,”
Chem. Phys.
515
,
603
613
(
2018
), part of the Special Issue: Ultrafast Photoinduced Processes in Polyatomic Molecules: Electronic Structure, Dynamics and Spectroscopy (Dedicated to Wolfgang Domcke on the Occasion of his 70th Birthday).
40.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
,
7069
7163
(
2018
).
41.
F. C.
Spano
, “
Symmetry-breaking charge separation and null aggregates
,”
J. Phys. Chem. C
128
,
248
260
(
2024
).
42.
Y.
Xie
,
H.
Sun
,
Q.
Zheng
,
J.
Zhao
,
H.
Ren
, and
Z.
Lan
, “
Diabatic Hamiltonian construction in van der Waals heterostructure complexes
,”
J. Mater. Chem. A
7
,
27484
27492
(
2019
).
43.
Y.
Yao
,
K.-W.
Sun
,
Z.
Luo
, and
H.
Ma
, “
Full quantum dynamics simulation of a realistic molecular system using the adaptive time-dependent density matrix renormalization group method
,”
J. Phys. Chem. Lett.
9
,
413
419
(
2018
).
44.
Y.
Yao
,
X.
Xie
, and
H.
Ma
, “
Ultrafast long-range charge separation in organic photovoltaics: Promotion by off-diagonal vibronic couplings and entropy increase
,”
J. Phys. Chem. Lett.
7
,
4830
4835
(
2016
).
45.
H.
Ma
and
A.
Troisi
, “
Direct optical generation of long-range charge-transfer states in organic photovoltaics
,”
Adv. Mater.
26
,
6163
6167
(
2014
).
46.
K.
Wang
,
J.
Ma
, and
H.
Ma
, “
Characterizing the excited states of large photoactive systems by exciton models
,”
J. Chin. Chem. Soc.
70
,
253
268
(
2023
).
47.
W.
Barford
, “
Exciton transfer integrals between polymer chains
,”
J. Chem. Phys.
126
,
134905
(
2007
).
48.
N. J.
Hestand
and
F. C.
Spano
, “
Molecular aggregate photophysics beyond the Kasha model: Novel design principles for organic materials
,”
Acc. Chem. Res.
50
,
341
350
(
2017
).
49.
N. J.
Hestand
and
F. C.
Spano
, “
Interference between coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks
,”
J. Chem. Phys.
143
,
244707
(
2015
).
50.
K.
Wang
,
Z.
Xie
,
Z.
Luo
, and
H.
Ma
, “
Low-scaling excited state calculation using the block interaction product state
,”
J. Phys. Chem. Lett.
13
,
462
470
(
2022
).
51.
Y.
Xu
,
C.
Liu
, and
H.
Ma
, “
Hierarchical mapping for efficient simulation of strong system-environment interactions
,”
J. Chem. Theory Comput.
19
,
426
435
(
2023
).
52.
J.
Haegeman
,
J. I.
Cirac
,
T. J.
Osborne
,
I.
Pižorn
,
H.
Verschelde
, and
F.
Verstraete
, “
Time-dependent variational principle for quantum lattices
,”
Phys. Rev. Lett.
107
,
070601
(
2011
).
53.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
54.
N.
Lyu
,
E.
Mulvihill
,
M. B.
Soley
,
E.
Geva
, and
V. S.
Batista
, “
Tensor-train thermo-field memory kernels for generalized quantum master equations
,”
J. Chem. Theory Comput.
19
,
1111
1129
(
2023
).
55.
H.
Sun
,
Z.
Jin
,
C.
Yang
,
R. L. C.
Akkermans
,
S. H.
Robertson
,
N. A.
Spenley
,
S.
Miller
, and
S. M.
Todd
, “
Compass II: Extended coverage for polymer and drug-like molecule databases
,”
J. Mol. Model.
22
,
47
(
2016
).
56.
F. C.
Module
, Materials studio v 7.0,
Accelrys, Inc.
,
2013
.
57.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
58.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).

Supplementary Material

You do not currently have access to this content.