HORTON is a free and open-source electronic-structure package written primarily in Python 3 with some underlying C++ components. While HORTON’s development has been mainly directed by the research interests of its leading contributing groups, it is designed to be easily modified, extended, and used by other developers of quantum chemistry methods or post-processing techniques. Most importantly, HORTON adheres to modern principles of software development, including modularity, readability, flexibility, comprehensive documentation, automatic testing, version control, and quality-assurance protocols. This article explains how the principles and structure of HORTON have evolved since we started developing it more than a decade ago. We review the features and functionality of the latest HORTON release (version 2.3) and discuss how HORTON is evolving to support electronic structure theory research for the next decade.

1.
F.
Heidar-Zadeh
,
M.
Richer
,
S.
Fias
,
R. A.
Miranda-Quintana
,
M.
Chan
,
M.
Franco-Perez
,
C. E.
Gonzalez-Espinoza
,
T. D.
Kim
,
C.
Lanssens
,
A. H. G.
Patel
,
X. D.
Yang
,
E.
Vohringer-Martinez
,
C.
Cardenas
,
T.
Verstraelen
, and
P. W.
Ayers
, “
An explicit approach to conceptual density functional theory descriptors of arbitrary order
,”
Chem. Phys. Lett.
660
,
307
312
(
2016
).
2.
L.
Pujal
,
A.
Tehrani
, and
F.
Heidar-Zadeh
, “
Chemtools: Gain chemical insight form quantum chemistry calculations
,” in
Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory
, 1st ed., edited by
S.
Liu
(
Wiley
,
2022
).
3.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
, “
ERKALE—A flexible program package for X-ray properties of atoms and molecules
,”
J. Comput. Chem.
33
,
1572
1585
(
2012
).
4.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
5.
I.
Fdez Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. A.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
6.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
7.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenæs
,
S.
Høst
,
I.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
WIREs Comput. Mol. Sci.
4
,
269
284
(
2014
).
8.
L.
Lemmens
,
X.
De Vriendt
,
D.
Van Hende
,
T.
Huysentruyt
,
P.
Bultinck
, and
G.
Acke
, “
GQCP: The ghent quantum chemistry package
,”
J. Chem. Phys.
155
,
084802
(
2021
).
9.
G. J. R.
Aroeira
,
M. M.
Davis
,
J. M.
Turney
, and
H. F. I.
Schaefer
, “
Fermi.jl: A modern design for quantum chemistry
,”
J. Chem. Theory Comput.
18
,
677
686
(
2022
).
10.
J. P.
Unsleber
,
T.
Dresselhaus
,
K.
Klahr
,
D.
Schnieders
,
M.
B”ockers
,
D.
Barton
, and
J.
Neugebauer
, “
Serenity: A subsystem quantum chemistry program
,”
J. Comput. Chem.
39
,
788
798
(
2018
).
11.
D.
Poole
,
J. L.
Galvez Vallejo
, and
M. S.
Gordon
, “
A new kid on the block: Application of Julia to Hartree–Fock calculations
,”
J. Chem. Theory Comput.
16
,
5006
5013
(
2020
).
12.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
WIREs Comput. Mol. Sci.
8
,
e1340
(
2018
).
13.
K.
Boguslawski
,
A.
Leszczyk
,
A.
Nowak
,
F.
Brzȩk
,
P. S.
Żuchowski
,
D.
Kȩdziera
, and
P.
Tecmer
, “
Pythonic black-box electronic structure tool (PyBEST). An open-source python platform for electronic structure calculations at the interface between chemistry and physics
,”
Comput. Phys. Commun.
264
,
107933
(
2021
).
14.
K.
Boguslawski
,
F.
Brzȩk
,
R.
Chakraborty
,
K.
Cieślak
,
S.
Jahani
,
A.
Leszczyk
,
A.
Nowak
,
E.
Sujkowski
,
J.
Świerczyński
,
S.
Ahmadkhani
,
D.
Kȩdziera
,
M. H.
Kriebel
,
P. S.
Żuchowski
, and
P.
Tecmer
, “
PyBEST: Improved functionality and enhanced performance
,”
Comput. Phys. Commun.
297
,
109049
(
2024
).
15.
Q.
Wu
and
T.
Van Voorhis
, “
Direct optimization method to study constrained systems within density-functional theory
,”
Phys. Rev. A
72
,
024502
(
2005
).
16.
T.
Verstraelen
,
P. W.
Ayers
,
V.
Van Speybroeck
, and
M.
Waroquier
, “
ACKS2: Atom-condensed Kohn–Sham DFT approximated to second order
,”
J. Chem. Phys.
138
,
074108
(
2013
).
17.
T.
Verstraelen
,
S.
Vandenbrande
, and
P. W.
Ayers
, “
Direct computation of parameters for accurate polarizable force fields
,”
J. Chem. Phys.
141
,
194114
(
2014
).
18.
E.
Vohringer-Martinez
,
T.
Verstraelen
, and
P. W.
Ayers
, “
The influence of Ser-154, Cys-113, and the phosphorylated threonine residue on the catalytic reaction mechanism of Pin1
,”
J. Phys. Chem. B
118
,
9871
9880
(
2014
).
19.
T.
Verstraelen
,
D.
Van Neck
,
P. W.
Ayers
,
V.
Van Speybroeck
, and
M.
Waroquier
, “
The gradient curves method: An improved strategy for the derivation of molecular mechanics valence force fields from ab initio data
,”
J. Chem. Theory Comput.
3
,
1420
1434
(
2007
).
20.
P. W.
Ayers
, “
Charge transfer and polarization in force fields: An ab initio approach based on the (atom-condensed) Kohn–Sham equations, approximated by second-order perturbation theory about the reference atoms (ACKS2)
,” in
Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory
, 1st ed., edited by
S.
Liu
(
Wiley
,
2022
), pp.
603
629
.
21.
Q.
Wu
and
T.
Van Voorhis
, “
Constrained density functional theory and its application in long-range electron transfer
,”
J. Chem. Theory Comput.
2
,
765
774
(
2006
).
22.
Q.
Wu
,
P. W.
Ayers
, and
Y. K.
Zhang
, “
Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies
,”
J. Chem. Phys.
131
,
164112
(
2009
).
23.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kús
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y. C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
24.
P. A.
Johnson
,
P. A.
Limacher
,
T. D.
Kim
,
M.
Richer
,
R. A.
Miranda-Quintana
,
F.
Heidar-Zadeh
,
P. W.
Ayers
,
P.
Bultinck
,
S.
De Baerdemacker
, and
D.
Van Neck
, “
Strategies for extending geminal-based wavefunctions: Open shells and beyond
,”
Comput. Theor. Chem.
1116
,
207
219
(
2017
).
25.
P. A.
Limacher
,
T. D.
Kim
,
P. W.
Ayers
,
P. A.
Johnson
,
S.
De Baerdemacker
,
D.
Van Neck
, and
P.
Bultinck
, “
The influence of orbital rotation on the energy of closed-shell wavefunctions
,”
Mol. Phys.
112
,
853
862
(
2014
).
26.
P.
Tecmer
,
K.
Boguslawski
,
P. A.
Johnson
,
P. A.
Limacher
,
M.
Chan
,
T.
Verstraelen
, and
P. W.
Ayers
, “
Assessing the accuracy of new geminal-based approaches
,”
J. Phys. Chem. A
118
,
9058
9068
(
2014
).
27.
P. A.
Johnson
,
P. W.
Ayers
,
P. A.
Limacher
,
S. D.
Baerdemacker
,
D. V.
Neck
, and
P.
Bultinck
, “
A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals
,”
Comput. Theor. Chem.
1003
,
101
113
(
2013
).
28.
P. A.
Limacher
,
P. W.
Ayers
,
P. A.
Johnson
,
S.
De Baerdemacker
,
D.
Van Neck
, and
P.
Bultinck
, “
A new mean-field method suitable for strongly correlated electrons: Computationally facile antisymmetric products of nonorthogonal geminals
,”
J. Chem. Theory Comput.
9
,
1394
1401
(
2013
).
29.
T. D.
Kim
,
R. A.
Miranda-Quintana
,
M.
Richer
, and
P. W.
Ayers
, “
Flexible ansatz for N-body configuration interaction
,”
Comput. Theor. Chem.
1202
,
113187
(
2021
).
30.
K.
Boguslawski
,
P.
Tecmer
,
P. A.
Limacher
,
P. A.
Johnson
,
P. W.
Ayers
,
P.
Bultinck
,
S.
De Baerdemacker
, and
D.
Van Neck
, “
Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal
,”
J. Chem. Phys.
140
,
214114
(
2014
).
31.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
32.
T. D.
Kim
,
M.
Richer
,
G.
Sánchez-Díaz
,
R. A.
Miranda-Quintana
,
T.
Verstraelen
,
F.
Heidar-Zadeh
, and
P. W.
Ayers
, “
Fanpy: A python library for prototyping multideterminant methods in ab initio quantum chemistry
,”
J. Comput. Chem.
44
,
697
709
(
2023
).
33.
E. F.
Valeev
,
Libint: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions
,
2022
, http://libint.valeyev.net/, version 2.8.0.
34.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
35.
V. I.
Lebedev
and
D. N.
Laikov
, “
A quadrature formula for the sphere of the 131st algebraic order of accuracy
,”
Dokl. Math.
59
,
477
481
(
1999
).
36.
S.
Lehtola
,
C.
Steigemann
,
M. J.
Oliveira
, and
M. A.
Marques
, “
Recent developments in libxc—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
5
(
2018
).
37.
P.
Pulay
, “
Improved SCF convergence acceleration
,”
J. Comput. Chem.
3
,
556
560
(
1982
).
38.
K. N.
Kudin
,
G. E.
Scuseria
, and
E.
Cancès
, “
A black-box self-consistent field convergence algorithm: One step closer
,”
J. Chem. Phys.
116
,
8255
8261
(
2002
).
39.
E.
Cancès
and
C.
Le Bris
, “
Can we outperform the DIIS approach for electronic structure calculations?
,”
Int. J. Quantum Chem.
79
,
82
90
(
2000
).
40.
C. E.
Gonzalez-Espinoza
,
P. W.
Ayers
,
J.
Karwowski
, and
A.
Savin
, “
Smooth models for the coulomb potential
,”
Theor. Chem. Acc.
135
,
256
(
2016
).
41.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
138
(
1977
).
42.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
,
144111
(
2007
).
43.
T. C.
Lillestolen
and
R. J.
Wheatley
, “
Redefining the atom: Atomic charge densities produced by an iterative stockholder approach
,”
Chem. Commun.
45
,
5909
5911
(
2008
).
44.
T.
Verstraelen
,
S.
Vandenbrande
,
F.
Heidar-Zadeh
,
L.
Vanduyfhuys
,
V.
Van Speybroeck
,
M.
Waroquier
, and
P. W.
Ayers
, “
Minimal basis iterative stockholder: Atoms in molecules for force-field development
,”
J. Chem. Theory Comput.
12
,
3894
3912
(
2016
).
45.
F.
Heidar-Zadeh
,
P. W.
Ayers
,
T.
Verstraelen
,
I.
Vinogradov
,
E.
Vöhringer-Martinez
, and
P.
Bultinck
, “
Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes
,”
J. Phys. Chem. A
122
,
4219
4245
(
2018
).
46.
F.
Heidar-Zadeh
and
P. W.
Ayers
, “
How pervasive is the Hirshfeld partitioning?
,”
J. Chem. Phys.
142
,
044107
(
2015
).
47.
L.
Vanduyfhuys
,
S.
Vandenbrande
,
T.
Verstraelen
,
R.
Schmid
,
M.
Waroquier
, and
V.
Van Speybroeck
, “
QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input
,”
J. Comput. Chem.
36
,
1015
1027
(
2015
).
48.
S.
Vandenbrande
,
M.
Waroquier
,
V. V.
Speybroeck
, and
T.
Verstraelen
, “
The monomer electron density force field (MEDFF): A physically inspired model for noncovalent interactions
,”
J. Chem. Theory Comput.
13
,
161
179
(
2017
).
49.
S.
Vandenbrande
,
M.
Waroquier
,
V.
Van Speybroeck
, and
T.
Verstraelen
, “
Ab initio evaluation of Henry coefficients using importance sampling
,”
J. Chem. Theory Comput.
14
,
6359
6369
(
2018
).
50.
D. A.
Saez
and
E.
Vöhringer-Martinez
, “
A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation
,”
J. Comput.-Aided Mol. Des.
29
,
951
961
(
2015
).
51.
A.
Lara
,
M.
Riquelme
, and
E.
Vöhringer-Martinez
, “
Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges
,”
J. Comput. Chem.
93
,
1281
(
2018
).
52.
M.
Riquelme
,
A.
Lara
,
D. L.
Mobley
,
T.
Verstraelen
,
A. R.
Matamala
, and
E.
Vöhringer-Martinez
, “
Hydration free energies in the FreeSolv database calculated with polarized iterative Hirshfeld charges
,”
J. Chem. Inf. Model.
58
,
1779
(
2018
).
53.
J.
Oller
,
D. A.
Saez
, and
E.
Vöhringer-Martinez
, “
Atom-condensed Fukui function in condensed phases and biological systems and its application to enzymatic fixation of carbon dioxide
,”
J. Phys. Chem. A
124
,
849
857
(
2020
).
54.
A.
Gomez
and
E.
Vöhringer-Martinez
, “
Conformational sampling and polarization of Asp26 in pKa calculations of thioredoxin
,”
Proteins: Struct., Funct., Bioinf.
87
,
467
477
(
2019
).
55.
H.
Hu
,
Z.
Lu
, and
W.
Yang
, “
Fitting molecular electrostatic potentials from quantum mechanical calculations
,”
J. Chem. Theory Comput.
3
,
1004
1013
(
2007
).
56.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
57.
E. R.
Davidson
, “
Meld: A many electron description
,” in
MOTECC-94: Methods and Techniques in Computational Chemistry
, edited by
E.
Clementi
(
STEF
,
Italy
,
1993
), Vol.
B
, pp.
209
274
.
58.
T.
Verstraelen
,
W.
Adams
,
L.
Pujal
,
A.
Tehrani
,
B. D.
Kelly
,
L.
Macaya
,
F.
Meng
,
M.
Richer
,
R.
Hernández-Esparza
,
X. D.
Yang
et al, “
IOData: A python library for reading, writing, and converting computational chemistry file formats and generating input files
,”
J. Comput. Chem.
42
,
458
464
(
2021
).
59.
A.
Tehrani
,
J. S. M.
Anderson
,
D.
Chakraborty
,
J. I.
Rodriguez-Hernandez
,
D. C.
Thompson
,
T.
Verstraelen
,
P. W.
Ayers
, and
F.
Heidar-Zadeh
, “
An information-theoretic approach to basis-set fitting of electron densities and other non-negative functions
,”
J. Comput. Chem.
44
,
1998
2015
(
2023
).
60.
F.
Meng
,
M.
Richer
,
A.
Tehrani
,
J.
La
,
T. D.
Kim
,
P. W.
Ayers
, and
F.
Heidar-Zadeh
, “
Procrustes: A python library to find transformations that maximize the similarity between matrices
,”
Comput. Phys. Commun.
276
,
108334
(
2022
).
You do not currently have access to this content.