This research examines the nonadiabatic dynamics of cyclobutanone after excitation into the n → 3s Rydberg S2 state. It stems from our contribution to the Special Topic of the Journal of Chemical Physics to test the predictive capability of computational chemistry against unseen experimental data. Decoherence-corrected fewest-switches surface hopping was used to simulate nonadiabatic dynamics with full and approximated nonadiabatic couplings. Several simulation sets were computed with different electronic structure methods, including a multiconfigurational wavefunction [multiconfigurational self-consistent field (MCSCF)] specially built to describe dissociative channels, multireference semiempirical approach, time-dependent density functional theory, algebraic diagrammatic construction, and coupled cluster. MCSCF dynamics predicts a slow deactivation of the S2 state (10 ps), followed by an ultrafast population transfer from S1 to S0 (<100 fs). CO elimination (C3 channel) dominates over C2H4 formation (C2 channel). These findings radically differ from the other methods, which predicted S2 lifetimes 10–250 times shorter and C2 channel predominance. These results suggest that routine electronic structure methods may hold low predictive power for the outcome of nonadiabatic dynamics.

1.
R.
Crespo-Otero
and
M.
Barbatti
, “
Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics
,”
Chem. Rev.
118
(
15
),
7026
7068
(
2018
).
2.
B. F. E.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
(
7
),
3305
3336
(
2018
).
3.
F.
Agostini
and
B. F. E.
Curchod
, “
Different flavors of nonadiabatic molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
(
5
),
e1417
(
2019
).
4.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
(
4
),
2215
2287
(
2020
).
5.
A. V.
Akimov
,
Comprehensive Computational Chemistry
(
Elsevier
,
2024
), pp.
235
272
.
6.
Quantum Chemistry and Dynamics of Excited States
, edited by
L.
González
and
R.
Lindh
(
Wiley
,
2020
).
7.
M.
Centurion
,
T. J. A.
Wolf
, and
J.
Yang
, “
Ultrafast imaging of molecules with electron diffraction
,”
Annu. Rev. Phys. Chem.
73
(
1
),
21
42
(
2022
).
8.
E.
Fabiano
and
W.
Thiel
, “
Nonradiative deexcitation dynamics of 9H-adenine: An OM2 surface hopping study
,”
J. Phys. Chem. A
112
(
30
),
6859
6863
(
2008
).
9.
C.
Hättig
, “
Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2)
,”
Adv. Quantum Chem.
50
,
37
60
(
2005
).
10.
E.
Marsili
,
A.
Prlj
, and
B. F. E.
Curchod
, “
Caveat when using ADC(2) for studying the photochemistry of carbonyl-containing molecules
,”
Phys. Chem. Chem. Phys.
23
(
23
),
12945
12949
(
2021
).
11.
J.
Janoš
and
P.
Slavíček
, “
What controls the quality of photodynamical simulations? Electronic structure versus nonadiabatic algorithm
,”
J. Chem. Theory Comput.
19
(
22
),
8273
8284
(
2023
).
12.
M.
Barbatti
,
Z.
Lan
,
R.
Crespo-Otero
,
J. J.
Szymczak
,
H.
Lischka
, and
W.
Thiel
, “
Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine
,”
J. Chem. Phys.
137
(
22
),
22A503
(
2012
).
13.
N. J.
Turro
,
J. C.
Dalton
,
K.
Dawes
,
G.
Farrington
,
R.
Hautala
,
D.
Morton
,
M.
Niemczyk
, and
N.
Schore
, “
Molecular photochemistry of alkanones in solution. α-cleavage, hydrogen abstraction, cycloaddition, and sensitization reactions
,”
Acc. Chem. Res.
5
(
3
),
92
101
(
1972
).
14.
J. C.
Hemminger
,
H. A. J.
Carless
, and
E. K. C.
Lee
, “
Laser-excited fluorescence emission from cis and trans isomers of 2,3- and 2,4-dimethylcyclobutanone. Ultra-short-lived excited molecules
,”
J. Am. Chem. Soc.
95
(
3
),
682
685
(
1973
).
15.
E. K. C.
Lee
, “
Laser photochemistry of selected vibronic and rotational states
,”
Acc. Chem. Res.
10
(
9
),
319
326
(
1977
).
16.
R. F.
Whitlock
and
A. B. F.
Duncan
, “
Electronic spectrum of cyclobutanone
,”
J. Chem. Phys.
55
(
1
),
218
224
(
1971
).
17.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
, “
Femtochemistry of Norrish type-I reactions: II. The anomalous predissociation dynamics of cyclobutanone on the S1 surface
,”
ChemPhysChem
2
(
5
),
294
309
(
2001
).
18.
N. E.
Lee
and
E. K. C.
Lee
, “
Tracer study of photochemically excited cyclobutanone-2-t and cyclobutanone. II. Detailed mechanism, energetics, unimolecular decomposition rates, and intermolecular vibrational energy transfer
,”
J. Chem. Phys.
50
(
5
),
2094
2107
(
1969
).
19.
J. C.
Hemminger
and
E. K. C.
Lee
, “
Fluorescence excitation and photodecomposition of the first excited singlet cyclobutanone (1A2): A study of predissociation of and collisional energy transfer from the vibronically selected species
,”
J. Chem. Phys.
56
(
11
),
5284
5295
(
1972
).
20.
K. Y.
Tang
and
E. K. C.
Lee
, “
Laser photolysis of cyclobutanone. Photodecomposition from selected vibronic levels at long wavelengths
,”
J. Phys. Chem.
80
(
17
),
1833
1836
(
1976
).
21.
S.-H.
Xia
,
X.-Y.
Liu
,
Q.
Fang
, and
G.
Cui
, “
Excited-state ring-opening mechanism of cyclic ketones: A MS-CASPT2//CASSCF study
,”
J. Phys. Chem. A
119
(
15
),
3569
3576
(
2015
).
22.
L.
Liu
and
W.-H.
Fang
, “
New insights into photodissociation dynamics of cyclobutanone from the AIMS dynamic simulation
,”
J. Chem. Phys.
144
(
14
),
144317
(
2016
).
23.
T. S.
Kuhlman
,
T. I.
Sølling
, and
K. B.
Møller
, “
Coherent motion reveals non-ergodic nature of internal conversion between excited states
,”
ChemPhysChem
13
(
3
),
820
827
(
2012
).
24.
T. S.
Kuhlman
,
S. P. A.
Sauer
,
T. I.
Sølling
, and
K. B.
Møller
, “
Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones
,”
J. Chem. Phys.
137
(
22
),
22A522
(
2012
).
25.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
(
2
),
1061
1071
(
1990
).
26.
S.
Hammes-Schiffer
and
J. C.
Tully
, “
Proton transfer in solution: Molecular dynamics with quantum transitions
,”
J. Chem. Phys.
101
(
6
),
4657
4667
(
1994
).
27.
G.
Granucci
,
M.
Persico
, and
A.
Toniolo
, “
Direct semiclassical simulation of photochemical processes with semiempirical wave functions
,”
J. Chem. Phys.
114
(
24
),
10608
10615
(
2001
).
28.
F.
Plasser
,
M.
Ruckenbauer
,
S.
Mai
,
M.
Oppel
,
P.
Marquetand
, and
L.
González
, “
Efficient and flexible computation of many-electron wave function overlaps
,”
J. Chem. Theory Comput.
12
(
3
),
1207
1219
(
2016
).
29.
K. K.
Baeck
and
H.
An
, “
Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only
,”
J. Chem. Phys.
146
(
6
),
064107
(
2017
).
30.
M. T.
do Casal
,
J. M.
Toldo
,
M.
Pinheiro
, Jr.
, and
M.
Barbatti
, “
Fewest switches surface hopping with Baeck-An couplings
,”
Open Res. Europe
1
,
49
(
2021
).
31.
J. M.
Toldo
,
R. S.
Mattos
,
M.
Pinheiro
,
S.
Mukherjee
, and
M.
Barbatti
, “
Recommendations for velocity adjustment in surface hopping
,”
J. Chem. Theory Comput.
20
(
2
),
614
624
(
2024
).
32.
Y.
Shu
,
L.
Zhang
,
X.
Chen
,
S.
Sun
,
Y.
Huang
, and
D. G.
Truhlar
, “
Nonadiabatic dynamics algorithms with only potential energies and gradients: Curvature-driven coherent switching with decay of mixing and curvature-driven trajectory surface hopping
,”
J. Chem. Theory Comput.
18
(
3
),
1320
1328
(
2022
).
33.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
, “
Understanding the surface hopping view of electronic transitions and decoherence
,”
Annu. Rev. Phys. Chem.
67
(
1
),
387
417
(
2016
).
34.
Y.
Shu
and
D. G.
Truhlar
, “
Decoherence and its role in electronically nonadiabatic dynamics
,”
J. Chem. Theory Comput.
19
(
2
),
380
395
(
2023
).
35.
G.
Granucci
and
M.
Persico
, “
Critical appraisal of the fewest switches algorithm for surface hopping
,”
J. Chem. Phys.
126
(
13
),
134114
(
2007
).
36.
M.
Barbatti
,
M.
Bondanza
,
R.
Crespo-Otero
,
B.
Demoulin
,
P. O.
Dral
,
G.
Granucci
,
F.
Kossoski
,
H.
Lischka
,
B.
Mennucci
,
S.
Mukherjee
,
M.
Pederzoli
,
M.
Persico
,
M.
Pinheiro
, Jr.
,
J.
Pittner
,
F.
Plasser
,
E.
Sangiogo Gil
, and
L.
Stojanovic
, “
Newton-X platform: New software developments for surface hopping and nuclear ensembles
,”
J. Chem. Theory Comput.
18
(
11
),
6851
6865
(
2022
).
37.
R.
Crespo-Otero
and
M.
Barbatti
, “
Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran
,”
Theor. Chem. Acc.
131
(
6
),
1237
(
2012
).
38.
J.
Eng
,
C.
Rankine
, and
T.
Penfold
, “
The photochemistry of Rydberg excited cyclobutanone: Photoinduced processes and ground state dynamics
,” arXiv:2402.09140 (
2024
).
39.
V. K.
Jaiswal
,
F.
Montorsi
,
F.
Aleotti
,
F.
Segatta
,
D.
Keefer
,
S.
Mukamel
,
A.
Nenov
,
I.
Conti
, and
M.
Garavelli
, “
Ultrafast photochemistry and electron-diffraction spectra in n → (3s) Rydberg excited cyclobutanone resolved at the multireference perturbative level
,” arXiv:2402.09873 (
2024
).
40.
P.
Vindel-Zandbergen
and
J.
González-Vázquez
, “
Non adiabatic dynamics of photoexcited cyclobutanone: Predicting structural measurements from trajectory surface hopping with XMS-CASPT2 simulations
,” arXiv:2402.11090 (
2024
).
41.
X.
Miao
,
K.
Diemer
, and
R.
Mitrić
, “
A CASSCF/MRCI trajectory surface hopping simulation of the photochemical dynamics and the gas phase ultrafast electron diffraction patterns of cyclobutanone
,”
J. Chem. Phys.
160
,
124309
(
2024
).
42.
A.
Martín Santa Daría
,
J.
Hernández-Rodríguez
,
L. M.
Ibele
, and
S.
Gómez
, “
Photofragmentation of cyclobutanone at 200 nm: TDDFT vs CASSCF electron diffraction
,”
J. Chem. Phys.
160
(
11
),
114303
(
2024
).
43.
P.
Hurd
,
T.
Cusati
, and
M.
Persico
, “
Trajectory integration with potential energy discontinuities
,”
J. Comput. Phys.
229
(
6
),
2109
2116
(
2010
).
44.
F.
Plasser
,
R.
Crespo-Otero
,
M.
Pederzoli
,
J.
Pittner
,
H.
Lischka
, and
M.
Barbatti
, “
Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study
,”
J. Chem. Theory Comput.
10
(
4
),
1395
1405
(
2014
).
45.
R.
Mansour
,
S.
Mukherjee
,
M.
Pinheiro
,
J. A.
Noble
,
C.
Jouvet
, and
M.
Barbatti
, “
Pre-Dewar structure modulates protonated azaindole photodynamics
,”
Phys. Chem. Chem. Phys.
24
(
20
),
12346
12353
(
2022
).
46.
H.
Lischka
,
T.
Müller
,
P. G.
Szalay
,
I.
Shavitt
,
R. M.
Pitzer
, and
R.
Shepard
, “
Columbus—A program system for advanced multireference theory calculations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
2
),
191
199
(
2011
).
47.
H.
Lischka
,
R.
Shepard
,
T.
Müller
,
P. G.
Szalay
,
R. M.
Pitzer
,
A. J. A.
Aquino
,
M. M.
Araújo do Nascimento
,
M.
Barbatti
,
L. T.
Belcher
,
J.-P.
Blaudeau
,
I.
Borges
,
S. R.
Brozell
,
E. A.
Carter
,
A.
Das
,
G.
Gidofalvi
,
L.
González
,
W. L.
Hase
,
G.
Kedziora
,
M.
Kertesz
,
F.
Kossoski
,
F. B. C.
Machado
,
S.
Matsika
,
S. A.
do Monte
,
D.
Nachtigallová
,
R.
Nieman
,
M.
Oppel
,
C. A.
Parish
,
F.
Plasser
,
R. F. K.
Spada
,
E. A.
Stahlberg
,
E.
Ventura
,
D. R.
Yarkony
, and
Z.
Zhang
, “
The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry
,”
J. Chem. Phys.
152
(
13
),
134110
(
2020
).
48.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
, “
Analytic MRCI gradient for excited states: Formalism and application to the n-π∗ valence- and n-(3s,3p) Rydberg states of formaldehyde
,”
Mol. Phys.
100
(
11
),
1647
1658
(
2002
).
49.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
, “
Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism
,”
J. Chem. Phys.
120
(
16
),
7322
7329
(
2004
).
50.
B.
Sellner
,
M.
Ruckenbauer
,
I.
Stambolić
,
M.
Barbatti
,
A. J. A.
Aquino
, and
H.
Lischka
, “
Photodynamics of azomethane: A nonadiabatic surface-hopping study
,”
J. Phys. Chem. A
114
(
33
),
8778
8785
(
2010
).
51.
R.
Shepard
, in
Advances in Chemical Physics
, edited by
K. P.
Lawley
(
John Wiley & Sons, Inc.
,
1987
), pp.
63
200
.
52.
L. B.
Harding
and
W. A.
Goddard
, “
Generalized valence bond description of the low-lying states of formaldehyde
,”
J. Am. Chem. Soc.
97
(
22
),
6293
6299
(
1975
).
53.
T. H.
Dunning
,
D. C.
Cartwright
,
W. J.
Hunt
,
P. J.
Hay
, and
F. W.
Bobrowicz
, “
Generalized valence bond calculations on the ground state (X1Σ+g) of nitrogen
,”
J. Chem. Phys.
64
(
11
),
4755
4766
(
1976
).
54.
B.
Sellner
,
M.
Barbatti
,
T.
Müller
,
W.
Domcke
, and
H.
Lischka
, “
Ultrafast non-adiabatic dynamics of ethylene including Rydberg states
,”
Mol. Phys.
111
(
16–17
),
2439
2450
(
2013
).
55.
M.
Ruckenbauer
,
M.
Barbatti
,
B.
Sellner
,
T.
Muller
, and
H.
Lischka
, “
Azomethane: Nonadiabatic photodynamical simulations in solution
,”
J. Phys. Chem. A
114
(
48
),
12585
12590
(
2010
).
56.
R.
Shepard
,
G. S.
Kedziora
,
H.
Lischka
,
I.
Shavitt
,
T.
Müller
,
P. G.
Szalay
,
M.
Kállay
, and
M.
Seth
, “
The accuracy of molecular bond lengths computed by multireference electronic structure methods
,”
Chem. Phys.
349
(
1–3
),
37
57
(
2008
).
57.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
(
9
),
6796
6806
(
1992
).
58.
P.
Császár
and
P.
Pulay
, “
Geometry optimization by direct inversion in the iterative subspace
,”
J. Mol. Struct.
114
,
31
34
(
1984
).
59.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
, “
The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces
,”
J. Am. Chem. Soc.
114
(
21
),
8191
8201
(
1992
).
60.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
(
1–3
),
51
57
(
2004
).
61.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
(
22
),
224108
(
2020
).
62.
P. O.
Dral
,
X.
Wu
, and
W.
Thiel
, “
Semiempirical quantum-chemical methods with orthogonalization and dispersion corrections
,”
J. Chem. Theory Comput.
15
(
3
),
1743
1760
(
2019
).
63.
J.
Liu
and
W.
Thiel
, “
An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics
,”
J. Chem. Phys.
148
(
15
),
154103
(
2018
).
64.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
(
18
),
184107
(
2020
).
65.
J.
Janoš
,
J. P. F.
Nunes
,
D.
Hollas
,
P.
Slavíček
, and
B. F. E.
Curchod
, “
Predicting the photodynamics of cyclobutanone triggered by a laser pulse at 200 nm and its MeV-UED signals -- a trajectory surface hopping and XMS-CASPT2 perspective
,” arXiv: 2402.05801 (
2024
).
66.
L.
O’Toole
,
P.
Brint
,
C.
Kosmidis
,
G.
Boulakis
, and
P.
Tsekeris
, “
Vacuum-ultraviolet absorption spectra of propanone, butanone and the cyclic ketones CnH2n–2O (n = 4, 5, 6, 7)
,”
J. Chem. Soc., Faraday Trans.
87
(
20
),
3343
3351
(
1991
).
67.
S.
Mukherjee
and
M.
Barbatti
, “
Ultrafast internal conversion without energy crossing
,”
Results Chem.
4
,
100521
(
2022
).
68.
T. J. A.
Wolf
and
T. J.
Martínez
(
2021
). “
Diffraction_simulation
,” GitHub. https://github.com/ThomasJAWolf/Diffraction_simulation
69.
F.
Salvat
,
A.
Jablonski
, and
C. J.
Powell
, “
elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules
,”
Comput. Phys. Commun.
165
(
2
),
157
190
(
2005
).
70.
T.
Mori
and
S.
Kato
, “
Dynamic electron correlation effect on conical intersections in photochemical ring-opening reaction of cyclohexadiene: MS-CASPT2 study
,”
Chem. Phys. Lett.
476
(
1–3
),
97
100
(
2009
).
71.
O.
Bennett
,
A.
Freibert
,
K. E.
Spinlove
, and
G. A.
Worth
, “
Prediction through quantum dynamics simulations: Photo-excited cyclobutanone
,” arXiv:2402.09933 (
2024
).
72.
D.
Hait
,
D.
Lahana
,
O. J.
Fajen
,
A. S. P.
Paz
,
P. A.
Unzueta
,
B.
Rana
,
L.
Lu
,
Y.
Wang
, and
T. J.
Martinez
, “
Prediction of photodynamics of 200 nm excited cyclobutanone with linear response electronic structure and ab initio multiple spawning
,” arXiv:2402.10710 (
2024
).
73.
D. V.
Makhov
,
A.
Kirrander
, and
D. V.
Shalashilin
, “
Ultrafast electron diffraction of photoexcited gas-phase cyclobutanone predicted by ab initio multiple cloning simulations
,” arXiv:2402.10349 (
2024
).
74.
J.
Peng
,
H.
Liu
, and
Z.
Lan
, “
The photodissociation dynamics and ultrafast electron diffraction image of cyclobutanone from the surface hopping dynamics simulation
,” arXiv:2402.08900 (
2024
).
75.
E. R.
Miller
,
S. J.
Hoehn
,
A.
Kumar
,
D.
Jiang
, and
S. M.
Parker
, “
Ultrafast photochemistry and electron diffraction for cyclobutanone in the S2 state: Surface hopping with time-dependent density functional theory
,” arXiv:2402.10336 (
2024
).
76.
J.
Suchan
,
F.
Liang
,
A. S.
Durden
, and
B. G.
Levine
, “
Prediction challenge: First principles simulation of the ultrafast electron diffraction spectrum of cyclobutanone
,”
J. Chem. Phys.
160
,
134310
(
2024
).
77.
L.
Hutton
,
A. M.
Carrascosa
,
A. W.
Prentice
,
M.
Simmermacher
,
J. E.
Runeson
,
M. J.
Paterson
, and
A.
Kirrander
, “
Using a multistate mapping approach to surface hopping to predict the ultrafast electron diffraction signal of gas-phase cyclobutanone
,” arXiv:2402.10195 (
2024
).
78.
J. E.
Lawrence
,
I. M.
Ansari
,
J. R.
Mannouch
,
M. A.
Manae
,
K.
Asnaashari
,
A.
Kelly
, and
J. O.
Richardson
, “
A MASH simulation of the photoexcited dynamics of cyclobutanone
,” arXiv:2402.10410 (
2024
).
79.
R.
Silberzahn
,
E. L.
Uhlmann
,
D. P.
Martin
,
P.
Anselmi
,
F.
Aust
,
E.
Awtrey
,
Š.
Bahník
,
F.
Bai
,
C.
Bannard
,
E.
Bonnier
,
R.
Carlsson
,
F.
Cheung
,
G.
Christensen
,
R.
Clay
,
M. A.
Craig
,
A.
Dalla Rosa
,
L.
Dam
,
M. H.
Evans
,
I.
Flores Cervantes
,
N.
Fong
,
M.
Gamez-Djokic
,
A.
Glenz
,
S.
Gordon-McKeon
,
T. J.
Heaton
,
K.
Hederos
,
M.
Heene
,
A. J.
Hofelich Mohr
,
F.
Högden
,
K.
Hui
,
M.
Johannesson
,
J.
Kalodimos
,
E.
Kaszubowski
,
D. M.
Kennedy
,
R.
Lei
,
T. A.
Lindsay
,
S.
Liverani
,
C. R.
Madan
,
D.
Molden
,
E.
Molleman
,
R. D.
Morey
,
L. B.
Mulder
,
B. R.
Nijstad
,
N. G.
Pope
,
B.
Pope
,
J. M.
Prenoveau
,
F.
Rink
,
E.
Robusto
,
H.
Roderique
,
A.
Sandberg
,
E.
Schlüter
,
F. D.
Schönbrodt
,
M. F.
Sherman
,
S. A.
Sommer
,
K.
Sotak
,
S.
Spain
,
C.
Spörlein
,
T.
Stafford
,
L.
Stefanutti
,
S.
Tauber
,
J.
Ullrich
,
M.
Vianello
,
E.-J.
Wagenmakers
,
M.
Witkowiak
,
S.
Yoon
, and
B. A.
Nosek
, “
Many analysts, one data set: Making transparent how variations in analytic choices affect results
,”
Adv. Methods Pract. Psychol. Sci.
1
(
3
),
337
356
(
2018
).
80.
M.
Schweinsberg
,
M.
Feldman
,
N.
Staub
,
O. R.
van den Akker
,
R. C. M.
van Aert
,
M. A. L. M.
van Assen
,
Y.
Liu
,
T.
Althoff
,
J.
Heer
,
A.
Kale
,
Z.
Mohamed
,
H.
Amireh
,
V.
Venkatesh Prasad
,
A.
Bernstein
,
E.
Robinson
,
K.
Snellman
,
S.
Amy Sommer
,
S. M. G.
Otner
,
D.
Robinson
,
N.
Madan
,
R.
Silberzahn
,
P.
Goldstein
,
W.
Tierney
,
T.
Murase
,
B.
Mandl
,
D.
Viganola
,
C.
Strobl
,
C. B. C.
Schaumans
,
S.
Kelchtermans
,
C.
Naseeb
,
S.
Mason Garrison
,
T.
Yarkoni
,
C. S.
Richard Chan
,
P.
Adie
,
P.
Alaburda
,
C.
Albers
,
S.
Alspaugh
,
J.
Alstott
,
A. A.
Nelson
,
E.
Ariño de la Rubia
,
A.
Arzi
,
Š.
Bahník
,
J.
Baik
,
L.
Winther Balling
,
S.
Banker
,
D. A. A.
Baranger
,
D. J.
Barr
,
B.
Barros-Rivera
,
M.
Bauer
,
E.
Blaise
,
L.
Boelen
,
K.
Bohle Carbonell
,
R. A.
Briers
,
O.
Burkhard
,
M.-A.
Canela
,
L.
Castrillo
,
T.
Catlett
,
O.
Chen
,
M.
Clark
,
B.
Cohn
,
A.
Coppock
,
N.
Cugueró-Escofet
,
P. G.
Curran
,
W.
Cyrus-Lai
,
D.
Dai
,
G.
Valentino Dalla Riva
,
H.
Danielsson
,
R. d. F. S. M.
Russo
,
N.
de Silva
,
C.
Derungs
,
F.
Dondelinger
,
C.
Duarte de Souza
,
B.
Tyson Dube
,
M.
Dubova
,
B.
Mark Dunn
,
P.
Adriaan Edelsbrunner
,
S.
Finley
,
N.
Fox
,
T.
Gnambs
,
Y.
Gong
,
E.
Grand
,
B.
Greenawalt
,
D.
Han
,
P. H. P.
Hanel
,
A. B.
Hong
,
D.
Hood
,
J.
Hsueh
,
L.
Huang
,
K. N.
Hui
,
K. A.
Hultman
,
A.
Javaid
,
L.
Ji Jiang
,
J.
Jong
,
J.
Kamdar
,
D.
Kane
,
G.
Kappler
,
E.
Kaszubowski
,
C. M.
Kavanagh
,
M.
Khabsa
,
B.
Kleinberg
,
J.
Kouros
,
H.
Krause
,
A.-M.
Krypotos
,
D.
Lavbič
,
R.
Ling Lee
,
T.
Leffel
,
W.
Yang Lim
,
S.
Liverani
,
B.
Loh
,
D.
Lønsmann
,
J.
Wei Low
,
A.
Lu
,
K.
MacDonald
,
C. R.
Madan
,
L.
Hjorth Madsen
,
C.
Maimone
,
A.
Mangold
,
A.
Marshall
,
H.
Ester Matskewich
,
K.
Mavon
,
K. L.
McLain
,
A. A.
McNamara
,
M.
McNeill
,
U.
Mertens
,
D.
Miller
,
B.
Moore
,
A.
Moore
,
E.
Nantz
,
Z.
Nasrullah
,
V.
Nejkovic
,
C. S.
Nell
,
A.
Arthur Nelson
,
G.
Nilsonne
,
R.
Nolan
,
C. E.
O’Brien
,
P.
O’Neill
,
K.
O’Shea
,
T.
Olita
,
J.
Otterbacher
,
D.
Palsetia
,
B.
Pereira
,
I.
Pozdniakov
,
J.
Protzko
,
J.-N.
Reyt
,
T.
Riddle
,
A. (Akmal) R. O.
Ali
,
I.
Ropovik
,
J. M.
Rosenberg
,
S.
Rothen
,
M.
Schulte-Mecklenbeck
,
N.
Sharma
,
G.
Shotwell
,
M.
Skarzynski
,
W.
Stedden
,
V.
Stodden
,
M. A.
Stoffel
,
S.
Stoltzman
,
S.
Subbaiah
,
R.
Tatman
,
P. H.
Thibodeau
,
S.
Tomkins
,
A.
Valdivia
,
G. B.
Druijff-van de Woestijne
,
L.
Viana
,
F.
Villesèche
,
W.
Duncan Wadsworth
,
F.
Wanders
,
K.
Watts
,
J. D.
Wells
,
C. E.
Whelpley
,
A.
Won
,
L.
Wu
,
A.
Yip
,
C.
Youngflesh
,
J.-C.
Yu
,
A.
Zandian
,
L.
Zhang
,
C.
Zibman
, and
E.
Luis Uhlmann
, “
Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis
,”
Organ. Behav. Hum. Decis. Processess
165
,
228
249
(
2021
).
81.
E.
Gould
,
H. S.
Fraser
,
T. H.
Parker
,
S.
Nakagawa
,
S. C.
Griffith
,
P. A.
Vesk
,
F.
Fidler
,
R. N.
Abbey-lee
,
J. K.
Abbott
,
L. A.
Aguirre
,
D.
Altschul
,
K.
Arekar
,
J. W.
Atkins
,
J.
Atkinson
,
M.
Barrett
,
K.
Bell
,
S. K.
Bello
,
B. J.
Berauer
,
M. G.
Bertram
,
P. D.
Billman
,
A.
Bonisoli-alquati
,
C.
Nina
,
M.
Bordes
,
T.
Botterill-james
,
S. A.
Boyle
,
T.
Bradfer-lawrence
,
M. I.
Brengdahl
,
S. E.
Campbell
,
C. J. W.
Carroll
,
T. A.
Catanach
,
E. S.
Choy
,
A. J.
Chunco
,
K. A.
Cressman
,
P. B. D.
Amelio
,
T. S.
Doherty
,
A.
Grace
,
R. P.
Dunn
,
L.
Eberhart-hertel
,
D. C.
Ensminger
,
S. M.
Ferguson
,
E. A.
Fiorenza
,
G. S.
Frank
,
C. A.
Freund
,
S. L.
Gandy
,
M.
Gilles
,
S. C.
Goslee
,
J. S.
Gosnell
,
D. M.
Gri
,
J. G.
Hagan
,
A. J.
Heaton
,
M.
Jung
,
A.
Ke
,
C. D.
Kelly
,
A. K.
Killion
,
C. L.
Larson
,
K. S.
Lauck
,
M. E.
Lauterbur
,
S.
Lindsay
,
M. M.
Mair
,
L. E.
Malm
,
P.
Marchand
,
C. A.
Martin
,
E. S.
Mccallum
,
S. M.
Mcnew
,
S. J.
Meiners
,
S. S.
Nooten
,
C. L.
Organ
,
A.
Payo-payo
,
K. I.
Perry
,
C.
Román-palacios
,
M. S.
Rosenberg
,
A. L.
Russell
,
A.
Sánchez-tójar
,
H. T.
Schilling
,
A. C.
Schneider
,
N. L.
Schultz
,
D. A.
Scott
,
E. F.
Stuber
,
G. F.
Sutton
,
E. M.
Tompkins
,
L.
Urban
,
K. M.
Vanderwel
, and
D. L.
Weller
, “
Same data, different analysts: Variation in effect sizes due to analytical decisions in ecology and evolutionary biology. 1 Introduction 2 Methods 3 Results
,”
EcoEvoRxiv:X2GG62
(
2023
).
82.
I.
Lakatos
,
Criticism and the Growth of Knowledge
(
Cambridge University Press
,
1970
), pp.
91
196
.

Supplementary Material

You do not currently have access to this content.