Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter’s capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna–Matthews–Olson protein, and ring deformation in photosystems I and II.

1.
G. R.
Fleming
,
G. S.
Schlau-Cohen
,
K.
Amarnath
, and
J.
Zaks
, “
Design principles of photosynthetic light-harvesting
,”
Faraday Discuss.
155
,
27
41
(
2012
).
2.
E.
Romero
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
, “
Quantum design of photosynthesis for bio-inspired solar-energy conversion
,”
Nature
543
,
355
365
(
2017
).
3.
T.
Reinot
,
J.
Chen
,
A.
Kell
,
M.
Jassas
,
K. C.
Robben
,
V.
Zazubovich
, and
R.
Jankowiak
, “
On the conflicting estimations of pigment site energies in photosynthetic complexes: A case study of the CP47 complex
,”
Anal. Chem. Insights
11
,
35
48
(
2016
), aci-11-2016-035[PII].
4.
A.
Melis
, “
Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency
,”
Plant Sci.
177
,
272
280
(
2009
).
5.
R. E.
Blankenship
,
D. M.
Tiede
,
J.
Barber
,
G. W.
Brudvig
,
G.
Fleming
,
M.
Ghirardi
,
M. R.
Gunner
,
W.
Junge
,
D. M.
Kramer
,
A.
Melis
,
T. A.
Moore
,
C. C.
Moser
,
D. G.
Nocera
,
A. J.
Nozik
,
D. R.
Ort
,
W. W.
Parson
,
R. C.
Prince
, and
R. T.
Sayre
, “
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
,”
Science
332
,
805
809
(
2011
).
6.
L.
Wobbe
and
C.
Remacle
, “
Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories
,”
J. Biotechnol.
201
,
28
42
(
2015
), molecular Biotechnology: from enzymes and metabolically engineered microbes to superior and sustainable products and processes.
7.
N.
Friedland
,
S.
Negi
,
T.
Vinogradova-Shah
,
G.
Wu
,
L.
Ma
,
S.
Flynn
,
T.
Kumssa
,
C.-H.
Lee
, and
R. T.
Sayre
, “
Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield
,”
Sci. Rep.
9
,
13028
(
2019
).
8.
R.
Croce
and
H.
van Amerongen
, “
Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy
,”
Science
369
,
eaay2058
(
2020
).
9.
M.
Reppert
,
V.
Naibo
, and
R.
Jankowiak
, “
Analytical formulas for low-fluence non-line-narrowed hole-burned spectra in an excitonically coupled dimer
,”
J. Chem. Phys.
131
,
234104
(
2009
).
10.
M.
Reppert
,
V.
Naibo
, and
R.
Jankowiak
, “
Modeling study of non-line-narrowed hole-burned spectra in weakly coupled dimers and multi-chromophoric molecular assemblies
,”
Chem. Phys.
367
,
27
35
(
2010
).
11.
M.
Reppert
,
K.
Acharya
,
B.
Neupane
, and
R.
Jankowiak
, “
Lowest electronic states of the CP47 antenna protein complex of photosystem II: Simulation of optical spectra and revised structural assignments
,”
J. Phys. Chem. B
114
,
11884
11898
(
2010
).
12.
R.
Jankowiak
,
M.
Reppert
,
V.
Zazubovich
,
J.
Pieper
, and
T.
Reinot
, “
Site selective and single complex laser-based spectroscopies: A window on excited state electronic structure, excitation energy transfer, and electron-phonon coupling of selected photosynthetic complexes
,”
Chem. Rev.
111
,
4546
4598
(
2011
).
13.
F.
Müh
and
A.
Zouni
, “
Structural basis of light-harvesting in the photosystem II core complex
,”
Protein Sci.
29
,
1090
1119
(
2020
).
14.
Y.
Kim
,
D.
Morozov
,
V.
Stadnytskyi
,
S.
Savikhin
, and
L. V.
Slipchenko
, “
Predictive first-principles modeling of a photosynthetic antenna protein: The Fenna–Matthews–Olson complex
,”
J. Phys. Chem. Lett.
11
,
1636
1643
(
2020
).
15.
M.
Reppert
, “
Bioexcitons by design: How do we get there?
,”
J. Phys. Chem. B
127
,
1872
1879
(
2023
).
16.
T.
Renger
and
F.
Müh
, “
Understanding photosynthetic light-harvesting: A bottom up theoretical approach
,”
Phys. Chem. Chem. Phys.
15
,
3348
3371
(
2013
).
17.
D.
Tronrud
,
A.
Camara-Artigas
,
R.
Blankenship
, and
J. P.
Allen
, “
Crystal structure of the Fenna-Matthews-Olson Protein from Chlorobaculum Tepidum
,”
Worldwide Protein Data Bank (PDB)
(
2009
).
18.
D. E.
Tronrud
,
J.
Wen
,
L.
Gay
, and
R. E.
Blankenship
, “
The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria
,”
Photosynth. Res.
100
,
79
87
(
2009
).
19.
G.
Zucchelli
,
D.
Brogioli
,
A. P.
Casazza
,
F. M.
Garlaschi
, and
R. C.
Jennings
, “
Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms
,”
Biophys. J.
93
,
2240
2254
(
2007
).
20.
G.
Zucchelli
,
S.
Santabarbara
, and
R. C.
Jennings
, “
The Qy absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations
,”
Biochemistry
51
,
2717
2736
(
2012
).
21.
J.
Adolphs
,
F.
Müh
,
M. E.-A.
Madjet
, and
T.
Renger
, “
Calculation of pigment transition energies in the FMO protein
,”
Photosynth. Res.
95
,
197
209
(
2008
).
22.
M. E.
Madjet
,
A.
Abdurahman
, and
T.
Renger
, “
Intermolecular Coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers
,”
J. Phys. Chem. B
110
,
17268
17281
(
2006
).
23.
M.
Higashi
and
S.
Saito
, “
Quantitative evaluation of site energies and their fluctuations of pigments in the Fenna-Matthews-Olson complex with an efficient method for generating a potential energy surface
,”
J. Chem. Theory Comput.
12
,
4128
4137
(
2016
).
24.
S.
Saito
,
M.
Higashi
, and
G. R.
Fleming
, “
Site-dependent fluctuations optimize electronic energy transfer in the Fenna-Matthews-Olson protein
,”
J. Phys. Chem. B
123
,
9762
9772
(
2019
).
25.
C.
Curutchet
and
B.
Mennucci
, “
Quantum chemical studies of light harvesting
,”
Chem. Rev.
117
,
294
343
(
2017
).
26.
X.
Jia
,
Y.
Mei
,
J. Z.
Zhang
, and
Y.
Mo
, “
Hybrid QM/MM study of FMO complex with polarized protein-specific charge
,”
Sci. Rep.
5
,
17096
(
2015
).
27.
S.
Shim
,
P.
Rebentrost
,
S.
Valleau
, and
A.
Aspuru-Guzik
, “
Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex
,”
Biophys. J.
102
,
649
660
(
2012
).
28.
S.
Chandrasekaran
,
M.
Aghtar
,
S.
Valleau
,
A.
Aspuru-Guzik
, and
U.
Kleinekathöfer
, “
Influence of force fields and quantum chemistry approach on spectral densities of Bchl a in solution and in FMO proteins
,”
J. Phys. Chem. B
119
,
9995
10004
(
2015
).
29.
A.
Sirohiwal
,
F.
Neese
, and
D. A.
Pantazis
, “
How can we predict accurate electrochromic shifts for biochromophores? A case study on the photosynthetic reaction center
,”
J. Chem. Theory Comput.
17
,
1858
1873
(
2021
).
30.
A. M.
Rosnik
and
C.
Curutchet
, “
Theoretical characterization of the spectral density of the water-soluble chlorophyll-binding protein from combined quantum mechanics/molecular mechanics molecular dynamics simulations
,”
J. Chem. Theory Comput.
11
,
5826
5837
(
2015
).
31.
Y.
Lahav
,
D.
Noy
, and
I.
Schapiro
, “
Spectral tuning of chlorophylls in proteins—Electrostatics vs. ring deformation
,”
Phys. Chem. Chem. Phys.
23
,
6544
6551
(
2021
).
32.
C.
Curutchet
,
J.
Kongsted
,
A.
Muñoz-Losa
,
H.
Hossein-Nejad
,
G. D.
Scholes
, and
B.
Mennucci
, “
Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein
,”
J. Am. Chem. Soc.
133
,
3078
3084
(
2011
).
33.
Y.
Kim
,
Z.
Mitchell
,
J.
Lawrence
,
D.
Morozov
,
S.
Savikhin
, and
L. V.
Slipchenko
, “
Predicting mutation-induced changes in the electronic properties of photosynthetic proteins from first principles: The Fenna–Matthews–Olson complex example
,”
J. Phys. Chem. Lett.
14
,
7038
7044
(
2023
).
34.
A.
Srivastava
,
S.
Ahad
,
J. H.
Wat
, and
M.
Reppert
, “
Accurate prediction of mutation-induced frequency shifts in chlorophyll proteins with a simple electrostatic model
,”
J. Chem. Phys.
155
,
151102
(
2021
).
35.
A.
Safa
,
L.
Chientzu
, and
M.
Reppert
, “
Photosynthetic protein spectroscopy Lab
,” NanoHUB. (
2021
) https://nanohub.org/tools/pigmenthunter.
36.
K.
Madhavan
,
L.
Zentner
,
V.
Farnsworth
,
S.
Shivarajapura
,
M.
Zentner
,
N.
Denny
, and
G.
Klimeck
, “
nanoHUB.org: cloud-based services for nanoscale modeling, simulation, and education
,”
Nanotechnol. Rev.
2
,
107
117
(
2013
).
37.
M.
McLennan
and
R.
Kennell
, “
HUBzero: A platform for dissemination and collaboration in computational science and engineering
,”
Comput. Sci. Eng.
12
,
48
53
(
2011
).
38.
H.
Nguyen
,
D. A.
Case
, and
A. S.
Rose
, “
NGLview-interactive molecular graphics for jupyter notebooks
,”
Bioinformatics
34
,
1241
1242
(
2017
).
39.
J. D.
Team
, IPywidgets: Interactive HTML Widgets for Jupyter,
2018
.
40.
J.
Lemkul
, “
From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [article v1.0]
,”
Living J. Comput. Mol. Sci.
1
,
5068
(
2019
).
41.
M. R.
Shirts
,
C.
Klein
,
J. M.
Swails
,
J.
Yin
,
M. K.
Gilson
,
D. L.
Mobley
,
D. A.
Case
, and
E. D.
Zhong
, “
Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset
,”
J. Comput. Aided Mol. Des.
31
(
1
),
147
161
(
2017
).
42.
W. L.
DeLano
, “
PyMOL: An open-source molecular graphics tool
,” CCP4 Newsletter on protein crystallography
40
,
82
92
(
2002
).
43.
D.
Horigome
,
H.
Satoh
,
N.
Itoh
,
K.
Mitsunaga
,
I.
Oonishi
,
A.
Nakagawa
, and
A.
Uchida
, “
Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein
,”
J. Biol. Chem.
282
,
6525
6531
(
2007
).
44.
D.
Horigome
,
H.
Satoh
,
N.
Itoh
,
K.
Mitsunaga
,
I.
Oonishi
,
A.
Nakagawa
, and
A.
Uchida
, “
Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein
,”
J. Biol. Chem.
282
,
6525
6531
(
2007
).
45.
J.
Adolphs
and
T.
Renger
, “
How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria
,”
Biophys. J.
91
,
2778
2797
(
2006
).
46.
W.
Jentzen
,
X.-Z.
Song
, and
J. A.
Shelnutt
, “
Structural characterization of synthetic and protein-bound porphyrins in terms of the lowest-frequency normal coordinates of the macrocycle
,”
J. Phys. Chem. B
101
,
1684
1699
(
1997
).
47.
C.
Lin
,
Y.
Mazor
, and
M.
Reppert
, “
Feeling the strain: Quantifying ligand deformation in photosynthesis
,”
J. Phys. Chem. B
128
(
10
),
2266
(
2024
).
48.
A. S.
Sardjan
,
F. P.
Westerman
,
J. P.
Ogilvie
, and
T. L. C.
Jansen
, “
Observation of ultrafast coherence transfer and degenerate states with polarization-controlled two-dimensional electronic spectroscopy
,”
J. Phys. Chem. B
124
,
9420
9427
(
2020
).
49.
C.
Kreisbeck
and
T.
Kramer
,
Exciton Dynamics Lab for Light-Harvesting Complexes
(GPU-HEOM), Version 1.3 (
Harvard University
,
2017
), available at https://nanohub.org/resources/16106.
50.
M.
Ceccarelli
,
P.
Procacci
, and
M.
Marchi
, “
An ab initio force field for the cofactors of bacterial photosynthesis
,”
J. Comput. Chem.
24
,
129
142
(
2003
).
51.
K.
Karki
and
D.
Roccatano
, “
Molecular dynamics simulation study of chlorophyll a in different organic solvents
,”
J. Chem. Theory Comput.
7
,
1131
1140
(
2011
).
52.
T.
Renger
and
F.
Müh
, “
Theory of excitonic couplings in dielectric media
,”
Photosynth. Res.
111
,
47
52
(
2011
).
53.
T.
Renger
,
I.
Trostmann
,
C.
Theiss
,
M. E.
Madjet
,
M.
Richter
,
H.
Paulsen
,
H. J.
Eichler
,
A.
Knorr
, and
G.
Renger
, “
Refinement of a structural model of a pigment–protein complex by accurate optical line shape theory and experiments
,”
J. Phys. Chem. B
111
,
10487
10501
(
2007
).
54.
G.
Raszewski
,
B. A.
Diner
,
E.
Schlodder
, and
T.
Renger
, “
Spectroscopic properties of reaction center pigments in photosystem II core complexes: Revision of the multimer model
,”
Biophys. J.
95
,
105
119
(
2008
).
55.
H.
van Amerongen
,
R.
van Grondelle
, and
L.
Valkunas
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
56.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
2011
).
57.
T.
Renger
and
V.
May
, “
Ultrafast exciton motion in photosynthetic antenna systems: The FMO-complex
,”
J. Phys. Chem. A
102
,
4381
4391
(
1998
).
58.
T.
Renger
,
V.
May
, and
O.
Kühn
, “
Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes
,”
Phys. Rep.
343
,
137
254
(
2001
).
59.
M.
Schröter
,
S.
Ivanov
,
J.
Schulze
,
S.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
60.
G. D.
Scholes
and
K. P.
Ghiggino
, “
Electronic interactions and interchromophore excitation transfer
,”
J. Phys. Chem.
98
,
4580
4590
(
1994
).
61.
C.-P.
Hsu
, “
The electronic couplings in electron transfer and excitation energy transfer
,”
Acc. Chem. Res.
42
,
509
518
(
2009
).
62.
R. S.
Knox
and
B. Q.
Spring
, “
Dipole strengths in the chlorophylls
,”
Photochem. Photobiol.
77
,
497
501
(
2003
).
63.
M.
Reppert
,
V.
Zazubovich
,
N. C.
Dang
,
M.
Seibert
, and
R.
Jankowiak
, “
Low-energy chlorophyll states in the CP43 antenna protein complex: Simulation of various optical spectra. II
,”
J. Phys. Chem. B
112
,
9934
9947
(
2008
).
64.
S.
Krawczyk
, “
The effects of hydrogen bonding and coordination interaction in visible absorption and vibrational spectra of chlorophyll a
,”
Biochim. Biophys. Acta, Bioenerg.
976
,
140
149
(
1989
).
65.
F.
Müh
,
M.
Plöckinger
, and
T.
Renger
, “
Electrostatic asymmetry in the reaction center of photosystem II
,”
J. Phys. Chem. Lett.
8
,
850
858
(
2017
).
66.
A.
Sirohiwal
,
F.
Neese
, and
D. A.
Pantazis
, “
Protein matrix control of reaction center excitation in photosystem II
,”
J. Am. Chem. Soc.
142
,
18174
18190
(
2020
).
67.
T.
Renger
and
R. A.
Marcus
, “
On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra
,”
J. Chem. Phys.
116
,
9997
10019
(
2002
).
68.
M.
Reppert
, “
Modeling of resonant hole-burning spectra in excitonically coupled systems: The effects of energy-transfer broadening
,”
J. Phys. Chem. Lett.
2
,
2716
2721
(
2011
).
69.
M.
Reppert
, “
Delocalization effects in chlorophyll fluorescence: Nonperturbative line shape analysis of a vibronically coupled dimer
,”
J. Phys. Chem. B
124
,
10024
10033
(
2020
).
70.
C.
Friedl
,
D. G.
Fedorov
, and
T.
Renger
, “
Towards a quantitative description of excitonic couplings in photosynthetic pigment–protein complexes: Quantum chemistry driven multiscale approaches
,”
Phys. Chem. Chem. Phys.
24
,
5014
5038
(
2022
).
71.
A.
Freiberg
,
M.
Rätsep
,
K.
Timpmann
,
G.
Trinkunas
, and
N. W.
Woodbury
, “
Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature
,”
J. Phys. Chem. B
107
,
11510
11519
(
2003
).
72.
P.
Qian
,
D. J. K.
Swainsbury
,
T. I.
Croll
,
P.
Castro-Hartmann
,
K.
Sader
,
G.
Divitini
, and
C. N.
Hunter
, “
Cryo-EM structure of light harvesting complex 2 from Rba. sphaeroides
,” (
2021
).
73.
P.
Qian
,
D. J. K.
Swainsbury
,
T. I.
Croll
,
P.
Castro-Hartmann
,
G.
Divitini
,
K.
Sader
, and
C. N.
Hunter
, “
Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å
,”
Biochemistry
60
,
3302
3314
(
2021
).
74.
L.
Cupellini
,
S.
Caprasecca
,
C. A.
Guido
,
F.
Müh
,
T.
Renger
, and
B.
Mennucci
, “
Coupling to charge transfer states is the key to modulate the optical bands for efficient light harvesting in purple bacteria
,”
J. Phys. Chem. Lett.
9
,
6892
6899
(
2018
).
75.
B. P.
Krueger
,
G. D.
Scholes
, and
G. R.
Fleming
, “
Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method
,”
J. Phys. Chem. B
102
,
9603
9604
(
1998
).
76.
K.
Timpmann
,
M.
Rätsep
,
C. N.
Hunter
, and
A.
Freiberg
, “
Emitting excitonic polaron states in core LH1 and peripheral LH2 bacterial light-harvesting complexes
,”
J. Phys. Chem. B
108
,
10581
10588
(
2004
).
77.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Two-dimensional spectroscopy of electronic couplings in photosynthesis
,”
Nature
434
,
625
628
(
2005
).
78.
A.
Kell
,
R. E.
Blankenship
, and
R.
Jankowiak
, “
Effect of spectral density shapes on the excitonic structure and dynamics of the Fenna–Matthews–Olson trimer from chlorobaculum tepidum
,”
J. Phys. Chem. A
120
,
6146
6154
(
2016
).
79.
R. G.
Saer
,
V.
Stadnytskyi
,
N. C.
Magdaong
,
C.
Goodson
,
S.
Savikhin
, and
R. E.
Blankenship
, “
Probing the excitonic landscape of the chlorobaculum tepidum Fenna–Matthews–Olson (FMO) complex: A mutagenesis approach
,”
Biochim. Biophys. Acta, Bioenerg.
1858
,
288
296
(
2017
).
80.
J.
Li
and
G.
Kurisu
, “
Cryo-EM structure of cyanobacterial photosystem I in the presence of ferredoxin and cytochrome c6
,” (
2022
).
81.
J.
Li
,
N.
Hamaoka
,
F.
Makino
,
A.
Kawamoto
,
Y.
Lin
,
M.
Rögner
,
M. M.
Nowaczyk
,
Y.-H.
Lee
,
K.
Namba
,
C.
Gerle
, and
G.
Kurisu
, “
Structure of cyanobacterial photosystem I complexed with ferredoxin at 1.97 Å resolution
,”
Commun. Biol.
5
,
951
(
2022
).
82.
Y.
Umena
,
K.
Kawakami
,
J.-R.
Shen
, and
N.
Kamiya
, “
Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å
,”
Nature
473
,
55
60
(
2011
).
83.
Y.
Umena
,
K.
Kawakami
,
J. R.
Shen
, and
N.
Kamiya
, “
Crystal structure analysis of Photosystem II complex
,” (
2014
).
84.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
85.
A.
Bose
and
N.
Makri
, “
All-mode quantum–classical path integral simulation of bacteriochlorophyll dimer exciton-vibration dynamics
,”
J. Phys. Chem. B
124
,
5028
5038
(
2020
).
86.
J.
Pieper
,
P.
Artene
,
M.
Rätsep
,
M.
Pajusalu
, and
A.
Freiberg
, “
Evaluation of electron–phonon coupling and spectral densities of pigment–protein complexes by line-narrowed optical spectroscopy
,”
J. Phys. Chem. B
122
,
9289
9301
(
2018
).

Supplementary Material

You do not currently have access to this content.