Warm dense matter is a highly energetic phase characterized by strong correlations, thermal effects, and quantum mechanical electrons. Thermal density functional theory is commonly used in simulations of this challenging phase, driving the development of temperature-dependent approximations to the exchange–correlation free energy. Approaches using the adiabatic connection formula are well known at zero temperature and have been recently leveraged at non-zero temperatures as well. In this work, a generalized thermal adiabatic connection (GTAC) formula is proposed, introducing a fictitious temperature parameter. This allows extraction of the exchange–correlation entropy SXC using simulated interaction strength scaling. This procedure uses a Hellmann–Feynman approach to express the exchange–correlation entropy in terms of a temperature- and interaction strength-dependent exchange–correlation potential energy. In addition, analysis of SXC as a function of interaction strength suggests new forms for approximations, and GTAC itself offers a new framework for exploring both the exact and approximate interplay of temperature, density, and interaction strength across a wide range of conditions.

1.
B.
Militzer
,
W. B.
Hubbard
,
J.
Vorberger
,
I.
Tamblyn
, and
S. A.
Bonev
, “
A massive core in Jupiter predicted from first-principles simulations
,”
Astrophys. J.
688
(
1
),
L45
L48
(
2008
).
2.
A.
Kietzmann
,
R.
Redmer
,
M. P.
Desjarlais
, and
T. R.
Mattsson
, “
Complex behavior of fluid lithium under extreme conditions
,”
Phys. Rev. Lett.
101
(
7
),
070401
(
2008
).
3.
M. D.
Knudson
,
M. P.
Desjarlais
,
R. W.
Lemke
,
T. R.
Mattsson
,
M.
French
,
N.
Nettelmann
, and
R.
Redmer
, “
Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/cm3
,”
Phys. Rev. Lett.
108
(
9
),
091102
(
2012
).
4.
M. K.
Matzen
,
M. A.
Sweeney
,
R. G.
Adams
,
J. R.
Asay
,
J. E.
Bailey
,
G. R.
Bennett
,
D. E.
Bliss
,
D. D.
Bloomquist
,
T. A.
Brunner
,
R. B.
Campbell
et al, “
Pulsed-power-driven high energy density physics and inertial confinement fusion research
,”
Phys. Plasmas
12
(
5
),
055503
(
2005
).
5.
O. A.
Hurricane
,
D. A.
Callahan
,
D. T.
Casey
,
E. L.
Dewald
,
T. R.
Dittrich
,
T.
Döppner
,
S.
Haan
,
D. E.
Hinkel
,
L. F.
Berzak Hopkins
,
O.
Jones
et al, “
Inertially confined fusion plasmas dominated by alpha-particle self-heating
,”
Nat. Phys.
12
(
8
),
800
806
(
2016
).
6.
M. D.
Knudson
and
M. P.
Desjarlais
, “
High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition
,”
Phys. Rev. Lett.
118
(
3
),
035501
(
2017
).
7.
A. B.
Zylstra
,
A. L.
Kritcher
,
O. A.
Hurricane
,
D. A.
Callahan
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
,
O. L.
Landen
,
B.
Bachmann
,
K. L.
Baker
et al, “
Experimental achievement and signatures of ignition at the national ignition facility
,”
Phys. Rev. E
106
(
2
),
025202
(
2022
).
8.
A. L.
Kritcher
,
A. B.
Zylstra
,
D. A.
Callahan
,
O. A.
Hurricane
,
C. R.
Weber
,
D. S.
Clark
,
C. V.
Young
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
et al, “
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
,”
Phys. Rev. E
106
(
2
),
025201
(
2022
).
9.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
et al, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
(
7
),
075001
(
2022
).
10.
M. J.
MacDonald
,
C. A.
Di Stefano
,
T.
Döppner
,
L. B.
Fletcher
,
K. A.
Flippo
,
D.
Kalantar
,
E. C.
Merritt
,
S. J.
Ali
,
P. M.
Celliers
,
R.
Heredia
et al, “
The colliding planar shocks platform to study warm dense matter at the national ignition facility
,”
Phys. Plasmas
30
(
6
),
062701
(
2023
).
11.
K.
Falk
, “
Experimental methods for warm dense matter research
,”
High Power Laser Sci. Eng.
6
,
e59
(
2018
).
12.
D. I.
Mihaylov
,
V. V.
Karasiev
, and
S. X.
Hu
, “
Thermal hybrid exchange-correlation density functional for improving the description of warm dense matter
,”
Phys. Rev. B
101
(
24
),
245141
(
2020
).
13.
V. V.
Karasiev
and
S. X.
Hu
, “
Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas
,”
Phys. Rev. E
103
(
3
),
033202
(
2021
).
14.
H.
Zhang
,
S.
Zhang
,
D.
Kang
,
J.
Dai
, and
M.
Bonitz
, “
Finite-temperature density-functional-theory investigation on the nonequilibrium transient warm-dense-matter state created by laser excitation
,”
Phys. Rev. E
103
(
1
),
013210
(
2021
).
15.
V. V.
Karasiev
,
D. I.
Mihaylov
, and
S. X.
Hu
, “
Meta-GGA exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations
,”
Phys. Rev. B
105
(
8
),
L081109
(
2022
).
16.
Z. A.
Moldabekov
,
M.
Pavanello
,
M. P.
Böhme
,
J.
Vorberger
, and
T.
Dornheim
, “
Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels
,”
Phys. Rev. Res.
5
(
2
),
023089
(
2023
).
17.
J. P.
Hinz
,
V. V.
Karasiev
,
S. X.
Hu
, and
D. I.
Mihaylov
, “
Development of a machine-learning-based ionic-force correction model for quantum molecular dynamic simulations of warm dense matter
,”
Phys. Rev. Mater.
7
(
8
),
083801
(
2023
).
18.
K. A.
Nichols
,
S. X.
Hu
,
A. J.
White
,
V. N.
Goncharov
,
D. I.
Mihaylov
,
L. A.
Collins
,
N. R.
Shaffer
, and
V. V.
Karasiev
, “
Time-dependent density-functional-theory calculations of the nonlocal electron stopping range for inertial confinement fusion applications
,”
Phys. Rev. E
108
(
3
),
035206
(
2023
).
19.
F.
Graziani
,
Z.
Moldabekov
,
B.
Olson
, and
M.
Bonitz
, “
Shock physics in warm dense matter: A quantum hydrodynamics perspective
,”
Contrib. Plasma Phys.
62
(
2
),
e202100170
(
2022
).
20.
T.
Dornheim
,
Z. A.
Moldabekov
,
K.
Ramakrishna
,
P.
Tolias
,
A. D.
Baczewski
,
D.
Kraus
,
T. R.
Preston
,
D. A.
Chapman
,
M. P.
Böhme
,
T.
Döppner
et al, “
Electronic density response of warm dense matter
,”
Phys. Plasmas
30
(
3
),
032705
(
2023
).
21.
J.-A.
Hernandez
,
M.
Bethkenhagen
,
S.
Ninet
,
M.
French
,
A.
Benuzzi-Mounaix
,
F.
Datchi
,
M.
Guarguaglini
,
F.
Lefevre
,
F.
Occelli
,
R.
Redmer
et al, “
Melting curve of superionic ammonia at planetary interior conditions
,”
Nat. Phys.
19
,
1280
1285
(
2023
).
22.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
23.
N. D.
Mermin
, “
Thermal properties of the inhomogenous electron gas
,”
Phys. Rev.
137
(
5A
),
A1441
(
1965
).
24.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
25.
M. V.
Stoitsov
and
I. Z.
Petkov
, “
Density functional theory at finite temperatures
,”
Ann. Phys.
184
(
1
),
121
147
(
1988
).
26.
M. D.
Knudson
and
M. P.
Desjarlais
, “
Shock compression of quartz to 1.6 TPa: Redefining a pressure standard
,”
Phys. Rev. Lett.
103
(
22
),
225501
(
2009
).
27.
Frontiers and Challenges in Warm Dense Matter
,
Lecture Notes in Computational Science and Engineering
Vol. 96, edited by
F.
Graziani
,
M. P.
Desjarlais
,
R.
Redmer
, and
S. B.
Trickey
(
Springer International Publishing
,
2014
).
28.
H. R.
Rüter
and
R.
Redmer
, “
Ab Initio simulations for the ion-ion structure factor of warm dense aluminum
,”
Phys. Rev. Lett.
112
,
145007
(
2014
).
29.
S. M.
Vinko
,
O.
Ciricosta
, and
J. S.
Wark
, “
Density functional theory calculations of continuum lowering in strongly coupled plasmas
,”
Nat. Commun.
5
(
1
),
3533
(
2014
).
30.
M. D.
Knudson
,
M. P.
Desjarlais
,
A.
Becker
,
R. W.
Lemke
,
K. R.
Cochrane
,
M. E.
Savage
,
D. E.
Bliss
,
T. R.
Mattsson
, and
R.
Redmer
, “
Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium
,”
Science
348
(
6242
),
1455
1460
(
2015
).
31.
S. X.
Hu
et al, “
Continuum lowering and Fermi-surface rising in strongly coupled and degenerate plasmas
,”
Phys. Rev. Lett.
119
(
6
),
065001
(
2017
).
32.
S.
Jiang
,
O. L.
Landen
,
H. D.
Whitley
,
S.
Hamel
,
R.
London
,
D. S.
Clark
,
P.
Sterne
,
S. B.
Hansen
,
S. X.
Hu
,
G. W.
Collins
et al, “
Thermal transport in warm dense matter revealed by refraction-enhanced x-ray radiography with a deep-neural-network analysis
,”
Commun. Phys.
6
(
1
),
98
(
2023
).
33.
B. B. L.
Witte
,
L. B.
Fletcher
,
E.
Galtier
,
E.
Gamboa
,
H. J.
Lee
,
U.
Zastrau
,
R.
Redmer
,
S. H.
Glenzer
, and
P.
Sperling
, “
Warm dense matter demonstrating non-drude conductivity from observations of nonlinear plasmon damping
,”
Phys. Rev. Lett.
118
(
22
),
225001
(
2017
).
34.
V. V.
Karasiev
,
J. W.
Dufty
, and
S. B.
Trickey
, “
Nonempirical semilocal free-energy density functional for matter under extreme conditions
,”
Phys. Rev. Lett.
120
(
7
),
076401
(
2018
).
35.
M.
Greiner
,
P.
Carrier
, and
A.
Görling
, “
Extension of exact-exchange density functional theory of solids to finite temperatures
,”
Phys. Rev. B
81
(
15
),
155119
(
2010
).
36.
V. V.
Karasiev
,
T.
Sjostrom
, and
S. B.
Trickey
, “
Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations
,”
Phys. Rev. B
86
(
11
),
115101
(
2012
).
37.
V. V.
Karasiev
,
T.
Sjostrom
,
J.
Dufty
, and
S. B.
Trickey
, “
Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations
,”
Phys. Rev. Lett.
112
,
076403
(
2014
).
38.
V. V.
Karasiev
,
J. W.
Dufty
, and
S. B.
Trickey
, “
Climbing Jacob’s ladder in the warm dense environment: Generalized gradient approximation exchange-correlation free-energy functional
,” arXiv:1612.06266 (
2016
).
39.
S.
Groth
,
T.
Dornheim
,
T.
Sjostrom
,
F. D.
Malone
,
W. M. C.
Foulkes
, and
M.
Bonitz
, “
Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions
,”
Phys. Rev. Lett.
119
,
135001
(
2017
).
40.
J.
Kozlowski
,
D.
Perchak
, and
K.
Burke
, “
Generalized gradient approximation made thermal
,” arXiv:2308.03319 (
2023
).
41.
J.
Harris
and
R. O.
Jones
, “
The surface energy of a bounded electron gas
,”
J. Phys. F: Met. Phys.
4
,
1170
(
1974
).
42.
D. C.
Langreth
and
J. P.
Perdew
, “
The exchange-correlation energy of a metallic surface
,”
Solid State Commun.
17
,
1425
(
1975
).
43.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
44.
S.
Pittalis
,
C. R.
Proetto
,
A.
Floris
,
A.
Sanna
,
C.
Bersier
,
K.
Burke
, and
E. K. U.
Gross
, “
Exact conditions in finite-temperature density-functional theory
,”
Phys. Rev. Lett.
107
,
163001
(
2011
).
45.
A.
Pribram-Jones
,
S.
Pittalis
,
E. K. U.
Gross
, and
K.
Burke
, “
Thermal density functional theory in context
,” in
Frontiers and Challenges in Warm Dense Matter
,
Lecture Notes in Computational Science and Engineering
Vol. 96, edited by
F.
Graziani
,
M. P.
Desjarlais
,
R.
Redmer
, and
S. B.
Trickey
(
Springer International Publishing
,
2014
), pp.
25
60
.
46.
B. P.
Harding
,
Z.
Mauri
, and
A.
Pribram-Jones
, “
Approximate bounds and temperature dependence of adiabatic connection integrands for the uniform electron gas
,”
J. Chem. Phys.
156
(
13
),
134104
(
2022
).
47.
V. V.
Karasiev
,
L.
Calderín
, and
S. B.
Trickey
, “
Importance of finite-temperature exchange correlation for warm dense matter calculations
,”
Phys. Rev. E
93
(
6
),
063207
(
2016
).
48.
J. C.
Smith
,
A.
Pribram-Jones
, and
K.
Burke
, “
Exact thermal density functional theory for a model system: Correlation components and accuracy of the zero-temperature exchange-correlation approximation
,”
Phys. Rev. B
93
(
24
),
245131
(
2016
).
49.
Z.
Moldabekov
,
S.
Schwalbe
,
M. P.
Böhme
,
J.
Vorberger
,
X.
Shao
,
M.
Pavanello
,
F. R.
Graziani
, and
T.
Dornheim
, “
Bound-state breaking and the importance of thermal exchange–correlation effects in warm dense hydrogen
,”
J. Chem. Theory Comput.
20
,
68
78
(
2023
).
50.
J. A.
Martinez B
,
X.
Shao
,
K.
Jiang
, and
M.
Pavanello
, “
Entropy is a good approximation to the electronic (static) correlation energy
,”
J. Chem. Phys.
159
(
19
),
191102
(
2023
).
51.
K.
Burke
and
friends
,
The ABC of DFT
(unpublished).
52.
A.
Pribram-Jones
,
S.
Pittalis
,
E. K. U.
Gross
, and
K.
Burke
, “
Thermal density functional theory in context
,” in
Computational Challenges in Warm Dense Matter
, edited by
F.
Graziani
et al
(
Springer
,
2013
).
53.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
54.
W.
Yang
, “
Generalized adiabatic connection in density functional theory
,”
J. Chem. Phys.
109
,
10107
(
1998
).
55.
R.
Garrick
,
A.
Natan
,
T.
Gould
, and
L.
Kronik
, “
Exact generalized Kohn-Sham theory for hybrid functionals
,”
Phys. Rev. X
10
(
2
),
021040
(
2020
).
56.
K.
Burke
,
J. C.
Smith
,
P. E.
Grabowski
, and
A.
Pribram-Jones
, “
Exact conditions on the temperature dependence of density functionals
,”
Phys. Rev. B
93
,
195132
(
2016
).
57.
M.
Levy
and
J. P.
Perdew
, “
Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. shape of the correlation potential and diamagnetic susceptibility for atoms
,”
Phys. Rev. A
32
,
2010
(
1985
).
58.
M.
Levy
and
J. P.
Perdew
, “
Density functionals for exchange and correlation energies: Exact conditions and comparison of approximations
,”
Int. J. Quantum Chem.
49
(
4
),
539
548
(
1994
).
59.
D.
Frydel
,
W. M.
Terilla
, and
K.
Burke
, “
Adiabatic connection from accurate wave-function calculations
,”
J. Chem. Phys.
112
(
12
),
5292
5297
(
2000
).
60.
A.
Pribram-Jones
and
K.
Burke
, “
Connection formulas for thermal density functional theory
,”
Phys. Rev. B
93
,
205140
(
2016
).
61.
J. C.
Smith
and
K.
Burke
, “
Thermal stitching: Combining the advantages of different quantum fermion solvers
,”
Phys. Rev. B
98
,
075148
(
2018
).
62.
S.
Giarrusso
and
A.
Pribram-Jones
, “
Møller–Plesset and density-fixed adiabatic connections for a model diatomic system at different correlation regimes
,”
J. Chem. Theory Comput.
19
(
17
),
5835
5850
(
2023
).
You do not currently have access to this content.