Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)–anthraquinone-based electron donor–acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper–reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.

1.
A. J.
Morris
,
G. J.
Meyer
, and
E.
Fujita
, “
Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels
,”
Acc. Chem. Res.
42
(
12
),
1983
1994
(
2009
).
2.
P. V.
Kamat
and
J.
Bisquert
, “
Solar fuels. Photocatalytic hydrogen generation
,”
J. Phys. Chem. C
117
(
29
),
14873
14875
(
2013
).
3.
A.
Lavie-Cambot
,
M.
Cantuel
,
Y.
Leydet
,
G.
Jonusauskas
,
D. M.
Bassani
, and
N. D.
McClenaghan
, “
Improving the photophysical properties of copper(I) bis(phenanthroline) complexes
,”
Coord. Chem. Rev.
252
(
23–24
),
2572
2584
(
2008
).
4.
M. S.
Lazorski
and
F. N.
Castellano
, “
Advances in the light conversion properties of Cu(I)-based photosensitizers
,”
Polyhedron
82
,
57
70
(
2014
).
5.
M. W.
Mara
,
K. A.
Fransted
, and
L. X.
Chen
, “
Interplays of excited state structures and dynamics in copper(I) diimine complexes: Implications and perspectives
,”
Coord. Chem. Rev.
282-283
,
2
18
(
2015
).
6.
J.
Beaudelot
,
S.
Oger
,
S.
Peruško
,
T.-A.
Phan
,
T.
Teunens
,
C.
Moucheron
, and
G.
Evano
, “
Photoactive copper complexes: Properties and applications
,”
Chem. Rev.
122
(
22
),
16365
16609
(
2022
).
7.
Z. A.
Siddique
,
Y.
Yamamoto
,
T.
Ohno
, and
K.
Nozaki
, “
Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds
,”
Inorg. Chem.
42
(
20
),
6366
6378
(
2003
).
8.
M. Z.
Zgierski
, “
Cu(I)-2,9-dimethyl-1,10-phenanthroline: Density functional study of the structure, vibrational force-field, and excited electronic states
,”
J. Chem. Phys.
118
(
9
),
4045
4051
(
2003
).
9.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Real-time observation of the photoinduced structural change of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) by femtosecond fluorescence spectroscopy: A realistic potential curve of the Jahn–Teller distortion
,”
J. Am. Chem. Soc.
129
(
16
),
5248
5256
(
2007
).
10.
G. B.
Shaw
,
C. D.
Grant
,
H.
Shirota
,
E. W.
Castner
,
G. J.
Meyer
, and
L. X.
Chen
, “
Ultrafast structural rearrangements in the MLCT excited state for copper(I) bis-phenanthrolines in solution
,”
J. Am. Chem. Soc.
129
(
7
),
2147
2160
(
2007
).
11.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Substituent effect on the photoinduced structural change of Cu(I) complexes observed by femtosecond emission spectroscopy
,”
Phys. Chem. Chem. Phys.
16
(
9
),
4143
4154
(
2014
).
12.
G.
Capano
,
M.
Chergui
,
U.
Rothlisberger
,
I.
Tavernelli
, and
T. J.
Penfold
, “
A quantum dynamics study of the ultrafast relaxation in a prototypical Cu(I)–phenanthroline
,”
J. Phys. Chem. A
118
(
42
),
9861
9869
(
2014
).
13.
R.
Englman
and
J.
Jortner
, “
The energy gap law for radiationless transitions in large molecules
,”
Mol. Phys.
18
(
2
),
145
164
(
1970
).
14.
J. V.
Caspar
,
E. M.
Kober
,
B. P.
Sullivan
, and
T. J.
Meyer
, “
Application of the energy gap law to the decay of charge-transfer excited states
,”
J. Am. Chem. Soc.
104
(
2
),
630
632
(
1982
).
15.
M. C.
Rosko
,
E. M.
Espinoza
,
S.
Arteta
,
S.
Kromer
,
J. P.
Wheeler
, and
F. N.
Castellano
, “
Employing long-range inductive effects to modulate metal-to-ligand charge transfer photoluminescence in homoleptic Cu(I) complexes
,”
Inorg. Chem.
62
(
7
),
3248
3259
(
2023
).
16.
M. K.
Eggleston
,
D. R.
McMillin
,
K. S.
Koenig
, and
A. J.
Pallenberg
, “
Steric effects in the ground and excited states of Cu(NN)2+ systems
,”
Inorg. Chem.
36
(
2
),
172
176
(
1997
).
17.
M.
Ruthkosky
,
F. N.
Castellano
, and
G. J.
Meyer
, “
Photodriven electron and energy transfer from copper phenanthroline excited states
,”
Inorg. Chem.
35
(
22
),
6406
6412
(
1996
).
18.
C. E.
McCusker
and
F. N.
Castellano
, “
Design of a long-lifetime, earth-abundant, aqueous compatible Cu(I) photosensitizer using cooperative steric effects
,”
Inorg. Chem.
52
(
14
),
8114
8120
(
2013
).
19.
M.
Ruthkosky
,
C. A.
Kelly
,
M. C.
Zaros
, and
G. J.
Meyer
, “
Long-lived charge-separated states following light excitation of Cu(I) donor–acceptor compounds
,”
J. Am. Chem. Soc.
119
(
49
),
12004
12005
(
1997
).
20.
A.
Listorti
,
G.
Accorsi
,
Y.
Rio
,
N.
Armaroli
,
O.
Moudam
,
A.
Gégout
,
B.
Delavaux-Nicot
,
M.
Holler
, and
J.-F.
Nierengarten
, “
Heteroleptic copper(I) complexes coupled with methano[60]fullerene: Synthesis, electrochemistry, and photophysics
,”
Inorg. Chem.
47
(
14
),
6254
6261
(
2008
).
21.
Y.
Rio
,
G.
Enderlin
,
C.
Bourgogne
,
J.-F.
Nierengarten
,
J.-P.
Gisselbrecht
,
M.
Gross
,
G.
Accorsi
, and
N.
Armaroli
, “
Ground and excited state electronic interactions in a bis(phenanthroline) copper(I) complex sandwiched between two fullerene subunits
,”
Inorg. Chem.
42
(
26
),
8783
8793
(
2003
).
22.
M. S.
Lazorski
,
R. H.
Gest
, and
C. M.
Elliott
, “
Photoinduced multistep charge separation in a heteroleptic Cu(I) bis(phenanthroline)-based donor–chromophore–acceptor triad
,”
J. Am. Chem. Soc.
134
(
42
),
17466
17469
(
2012
).
23.
S. V.
Kirner
,
D. M.
Guldi
,
J. D.
Megiatto
, Jr.
, and
D. I.
Schuster
, “
Synthesis and photophysical properties of new catenated electron donor–acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor
,”
Nanoscale
7
(
3
),
1145
1160
(
2015
).
24.
M.
Sandroni
,
Y.
Pellegrin
, and
F.
Odobel
, “
Heteroleptic bis-diimine copper(I) complexes for applications in solar energy conversion
,”
C. R. Chim.
19
(
1–2
),
79
93
(
2016
).
25.
P. A.
Forero Cortés
,
M.
Marx
,
M.
Trose
, and
M.
Beller
, “
Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives
,”
Chem Catal.
1
(
2
),
298
338
(
2021
).
26.
M.
Sandroni
,
A.
Maufroy
,
M.
Rebarz
,
Y.
Pellegrin
,
E.
Blart
,
C.
Ruckebusch
,
O.
Poizat
,
M.
Sliwa
, and
F.
Odobel
, “
Design of efficient photoinduced charge separation in donor–copper(I)–acceptor triad
,”
J. Phys. Chem. C
118
(
49
),
28388
28400
(
2014
).
27.
D.
Hayes
,
L.
Kohler
,
L. X.
Chen
, and
K. L.
Mulfort
, “
Ligand mediation of vectorial charge transfer in Cu(I)diimine chromophore–acceptor dyads
,”
J. Phys. Chem. Lett.
9
(
8
),
2070
2076
(
2018
).
28.
D.
Hayes
,
L.
Kohler
,
R. G.
Hadt
,
X.
Zhang
,
C.
Liu
,
K. L.
Mulfort
, and
L. X.
Chen
, “
Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy
,”
Chem. Sci.
9
(
4
),
860
875
(
2018
).
29.
Z.
Singh
,
S.
Kamal
, and
M. B.
Majewski
, “
Copper(I) donor–chromophore–acceptor assembly for light-driven oxidation on a zinc oxide nanowire electrode
,”
J. Phys. Chem. C
126
(
39
),
16732
16743
(
2022
).
30.
L.
Wang
,
Z.-L.
Xie
,
B. T.
Phelan
,
V. M.
Lynch
,
L. X.
Chen
, and
K. L.
Mulfort
, “
Changing directions: Influence of ligand electronics on the directionality and kinetics of photoinduced charge transfer in Cu(I)diimine complexes
,”
Inorg. Chem.
62
(
35
),
14368
14376
(
2023
).
31.
B.
Rosa López
,
L.
Bárbara Loeb
,
T.
Boussie
, and
T. J.
Meyer
, “
Synthesis of a new phenanthroline derived ligand with acceptor properties
,”
Tetrahedron Lett.
37
(
31
),
5437
5440
(
1996
).
32.
Z.-L.
Xie
,
N.
Gupta
,
J.
Niklas
,
O. G.
Poluektov
,
V. M.
Lynch
,
K. D.
Glusac
, and
K. L.
Mulfort
, “
Photochemical charge accumulation in a heteroleptic copper(I)-anthraquinone molecular dyad via proton-coupled electron transfer
,”
Chem. Sci.
14
(
37
),
10219
10235
(
2023
).
33.
M.
Schmittel
and
A.
Ganz
, “
Stable mixed phenanthroline copper(I) complexes. Key building blocks for supramolecular coordination chemistry
,”
Chem. Commun.
1997
(
11
),
999
1000
.
34.
M.
Schmittel
,
C.
Michel
,
S.-X.
Liu
,
D.
Schildbach
, and
D.
Fenske
, “
New sterically encumbered 2,9-diarylphenanthrolines for the selective formation of heteroleptic bis(phenanthroline)copper(I) complexes
,”
Eur. J. Inorg. Chem.
2001
(
5
),
1155
1166
().
35.
S.
De
,
K.
Mahata
, and
M.
Schmittel
, “
Metal-coordination-driven dynamic heteroleptic architectures
,”
Chem. Soc. Rev.
39
(
5
),
1555
1575
(
2010
).
36.
L.
Yang
,
D. R.
Powell
, and
R. P.
Houser
, “
Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4
,”
Dalton Trans.
2007
(
9
),
955
964
.
37.
L.
Kohler
,
D.
Hayes
,
J.
Hong
,
T. J.
Carter
,
M. L.
Shelby
,
K. A.
Fransted
,
L. X.
Chen
, and
K. L.
Mulfort
, “
Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores
,”
Dalton Trans.
45
(
24
),
9871
9883
(
2016
).
38.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
(
44
),
6615
6620
(
2008
).
39.
M. W.
Mara
,
B. T.
Phelan
,
Z.-L.
Xie
,
T. W.
Kim
,
D. J.
Hsu
,
X.
Liu
,
A. J. S.
Valentine
,
P.
Kim
,
X.
Li
,
S.-i.
Adachi
et al, “
Unveiling ultrafast dynamics in bridged bimetallic complexes using optical and X-ray transient absorption spectroscopies
,”
Chem. Sci.
13
(
6
),
1715
1724
(
2022
).
40.
R. L.
Martin
, “
Natural transition orbitals
,”
J. Chem. Phys.
118
(
11
),
4775
4777
(
2003
).
41.
R.
López
,
A. M.
Leiva
,
F.
Zuloaga
,
B.
Loeb
,
E.
Norambuena
,
K. M.
Omberg
,
J. R.
Schoonover
,
D.
Striplin
,
M.
Devenney
, and
T. J.
Meyer
, “
Excited-state electron transfer in a chromophore–quencher complex. Spectroscopic identification of a redox-separated state
,”
Inorg. Chem.
38
(
12
),
2924
2930
(
1999
).
42.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Ultrafast excited-state dynamics of copper(I) complexes
,”
Acc. Chem. Res.
48
(
3
),
782
791
(
2015
).
43.
N. A.
Gothard
,
M. W.
Mara
,
J.
Huang
,
J. M.
Szarko
,
B.
Rolczynski
,
J. V.
Lockard
, and
L. X.
Chen
, “
Strong steric hindrance effect on excited state structural dynamics of Cu(I) diimine complexes
,”
J. Phys. Chem. A
116
(
9
),
1984
1992
(
2012
).
44.
M. W.
Mara
,
N. E.
Jackson
,
J.
Huang
,
A. B.
Stickrath
,
X.
Zhang
,
N. A.
Gothard
,
M. A.
Ratner
, and
L. X.
Chen
, “
Effects of electronic and nuclear interactions on the excited-state properties and structural dynamics of copper(I) diimine complexes
,”
J. Phys. Chem. B
117
(
6
),
1921
1931
(
2013
).
45.
A. P.
Scott
and
L.
Radom
, “
Harmonic vibrational frequencies: An evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors
,”
J. Phys. Chem.
100
(
41
),
16502
16513
(
1996
).
46.
M. D.
Halls
,
J.
Velkovski
, and
H. B.
Schlegel
, “
Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set
,”
Theor. Chem. Acc.
105
(
6
),
413
421
(
2001
).
47.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
(
45
),
11683
11700
(
2007
).
48.
B. S.
Brunschwig
,
S.
Ehrenson
, and
N.
Sutin
, “
Solvent reorganization in optical and thermal electron-transfer processes
,”
J. Phys. Chem.
90
(
16
),
3657
3668
(
1986
).
49.
R. A.
Marcus
, “
On the theory of oxidation-reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
(
5
),
966
978
(
1956
).
50.
A. B.
Myers
, “
Resonance Raman intensities and charge-transfer reorganization energies
,”
Chem. Rev.
96
(
3
),
911
926
(
1996
).
51.
J. L.
McHale
, “
Subpicosecond solvent dynamics in charge-transfer transitions: Challenges and opportunities in resonance Raman spectroscopy
,”
Acc. Chem. Res.
34
(
4
),
265
272
(
2001
).
52.
M.
Wächtler
,
J.
Guthmuller
,
S.
Kupfer
,
M.
Maiuri
,
D.
Brida
,
J.
Popp
,
S.
Rau
,
G.
Cerullo
, and
B.
Dietzek
, “
Ultrafast intramolecular relaxation and wave-packet motion in a ruthenium-based supramolecular photocatalyst
,”
Chem. - Eur. J.
21
(
21
),
7668
7674
(
2015
).
53.
M.
Iwamura
,
H.
Watanabe
,
K.
Ishii
,
S.
Takeuchi
, and
T.
Tahara
, “
Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex
,”
J. Am. Chem. Soc.
133
(
20
),
7728
7736
(
2011
).
54.
L.
Hua
,
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
The substituent effect on the MLCT excited state dynamics of Cu(I) complexes studied by femtosecond time-resolved absorption and observation of coherent nuclear wavepacket motion
,”
Phys. Chem. Chem. Phys.
17
(
3
),
2067
2077
(
2015
).
55.
S.
Garakyaraghi
,
E. O.
Danilov
,
C. E.
McCusker
, and
F. N.
Castellano
, “
Transient absorption dynamics of sterically congested Cu(I) MLCT excited states
,”
J. Phys. Chem. A
119
(
13
),
3181
3193
(
2015
).
56.
A.
Guda
,
J.
Windisch
,
B.
Probst
,
J. A.
van Bokhoven
,
R.
Alberto
,
M.
Nachtegaal
,
L. X.
Chen
, and
G.
Smolentsev
, “
Excited-state structure of copper phenanthroline-based photosensitizers
,”
Phys. Chem. Chem. Phys.
23
(
47
),
26729
26736
(
2021
).
57.
J.
Cody
,
J.
Dennisson
,
J.
Gilmore
,
D. G.
VanDerveer
,
M. M.
Henary
,
A.
Gabrielli
,
C. D.
Sherrill
,
Y.
Zhang
,
C.-P.
Pan
,
C.
Burda
, and
C. J.
Fahrni
, “
X-ray structures, photophysical characterization, and computational analysis of geometrically constrained copper(I)–phenanthroline complexes
,”
Inorg. Chem.
42
(
16
),
4918
4929
(
2003
).
58.
A. C. S.
Samia
,
J.
Cody
,
C. J.
Fahrni
, and
C.
Burda
, “
The effect of ligand constraints on the metal-to-ligand charge-tranfer relaxation dynamics of copper(I)–phenanthroline complexes: A comparative study by femtosecond time-resolved spectroscopy
,”
J. Phys. Chem. B
108
(
2
),
563
569
(
2004
).
59.
R. A.
Marcus
and
N.
Sutin
, “
Electron transfers in chemistry and biology
,”
Biochim. Biophys. Acta, Rev. Bioenerg.
811
(
3
),
265
322
(
1985
).
60.
R. A.
Marcus
and
N.
Sutin
, “
The relation between the barriers for thermal and optical electron transfer reactions in solution
,”
Comments Inorg. Chem.
5
(
3
),
119
133
(
1986
).
61.
J. R.
Bolton
and
M. D.
Archer
, “
Basic electron-transfer theory
,” in
Electron Transfer in Inorganic, Organic, and Biological Systems
,
Advances in Chemistry Vol. 228
(
American Chemical Society
,
1991
), pp.
7
23
.

Supplementary Material

You do not currently have access to this content.