Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light–matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid–liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes.

1.
R.
Li
and
C.
Li
, “
Photocatalytic water splitting on semiconductor-based photocatalysts
,” in
Advances in Catalysis
(
Elsevier
,
2017
), Vol.
60
, pp.
1
57
.
2.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
(
1972
).
3.
X.
Gao
,
Y.
Shen
,
Y.
Ma
,
S.
Wu
, and
Z.
Zhou
, “
A water splitting photocatalysis: Blue phosphorus/g-GeC van der Waals heterostructure
,”
Appl. Phys. Lett.
114
,
093902
(
2019
).
4.
S.
Hu
,
M. R.
Shaner
,
J. A.
Beardslee
,
M.
Lichterman
,
B. S.
Brunschwig
, and
N. S.
Lewis
, “
Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
,”
Science
344
,
1005
(
2014
).
5.
J.
Gu
,
Y.
Yan
,
J. L.
Young
,
K. X.
Steirer
,
N. R.
Neale
, and
J. A.
Turner
, “
Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
,”
Nat. Mater.
15
,
456
(
2016
).
6.
M. H.
Lee
et al, “
p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production
,”
Angew. Chem., Int. Ed.
51
,
10760
(
2012
).
7.
M. T.
McDowell
,
M. F.
Lichterman
,
J. M.
Spurgeon
,
S.
Hu
,
I. D.
Sharp
,
B. S.
Brunschwig
, and
N. S.
Lewis
, “
Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings
,”
J. Phys. Chem. C
118
,
19618
(
2014
).
8.
J. A.
Seabold
and
K.-S.
Choi
, “
Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
,”
J. Am. Chem. Soc.
134
,
2186
(
2012
).
9.
C.
Zhang
,
Y.
Fan
,
X.
Huang
,
K. H. L.
Zhang
,
M. C.
Beard
, and
Y.
Yang
, “
Hot-carrier transfer at photocatalytic silicon/platinum interfaces
,”
J. Chem. Phys.
152
,
144705
(
2020
).
10.
W.
Chen
,
X.
Wang
,
J.
Duan
,
C.
Zhou
,
T.
Liu
, and
S.
Xiao
, “
Perfect absorption in free-standing GaAs nanocylinder arrays by degenerate critical coupling
,”
Opt. Mater.
121
,
111558
(
2021
).
11.
W. S.
Hobson
and
A. B.
Ellis
, “
Photoluminescent properties of n-GaAs electrodes: Applications of the dead-layer model to photoelectrochemical cells
,”
J. Appl. Phys.
54
,
5956
(
1983
).
12.
P. A.
Kohl
and
A. J.
Bard
, “
Semiconductor electrodes: XVIII. Liquid junction photovoltaic cells based on n-GaAs electrodes and acetonitrile solutions
,”
J. Electrochem. Soc.
126
,
603
(
1979
).
13.
R. N.
Hall
,
G. E.
Fenner
,
J. D.
Kingsley
,
T. J.
Soltys
, and
R. O.
Carlson
, “
Coherent light emission from GaAs junctions
,”
Phys. Rev. Lett.
9
,
366
(
1962
).
14.
S.
Hu
,
C.-Y.
Chi
,
K. T.
Fountaine
,
M.
Yao
,
H. A.
Atwater
,
P.
Daniel Dapkus
,
N. S.
Lewis
, and
C.
Zhou
, “
Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes
,”
Energy Environ. Sci.
6
,
1879
(
2013
).
15.
G.
Siddiqi
,
Z.
Pan
, and
S.
Hu
, “
III–V semiconductor photoelectrodes
,” in
Semiconductors and Semimetals
(
Elsevier
,
2017
), Vol.
97
, pp.
81
138
.
16.
Y. W.
Chen
,
J. D.
Prange
,
S.
Dühnen
,
Y.
Park
,
M.
Gunji
,
C. E. D.
Chidsey
, and
P. C.
McIntyre
, “
Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
,”
Nat. Mater
10
,
539
(
2011
).
17.
D.
Lee
,
W.
Wang
,
C.
Zhou
,
X.
Tong
,
M.
Liu
,
G.
Galli
, and
K.-S.
Choi
, “
The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4
,”
Nat. Energy
6
,
287
294
(
2021
).
18.
T. W.
Kim
and
K.-S.
Choi
, “
Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
,”
Science
343
,
990
(
2014
).
19.
K.
Maeda
,
T.
Takata
,
M.
Hara
,
N.
Saito
,
Y.
Inoue
,
H.
Kobayashi
, and
K.
Domen
, “
GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting
,”
J. Am. Chem. Soc.
127
,
8286
(
2005
).
20.
A.
Ghobadi
,
T. G.
Ulusoy Ghobadi
,
F.
Karadas
, and
E.
Ozbay
, “
Semiconductor thin film based metasurfaces and metamaterials for photovoltaic and photoelectrochemical water splitting applications
,”
Adv. Opt. Mater.
7
,
1900028
(
2019
).
21.
Y.
Chen
,
W.
Zheng
,
S.
Murcia-López
,
F.
Lv
,
J. R.
Morante
,
L.
Vayssieres
, and
C.
Burda
, “
Light management in photoelectrochemical water splitting—From materials to device engineering
,”
J. Mater. Chem. C
9
,
3726
(
2021
).
22.
J.
Huang
,
Z.
Huang
,
Y.
Yang
,
H.
Zhu
, and
T.
Lian
, “
Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue
,”
J. Am. Chem. Soc.
132
,
4858
(
2010
).
23.
Y.
Yang
,
W.
Rodríguez-Córdoba
, and
T.
Lian
, “
Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot–methylene blue complexes probed by electron and hole intraband transitions
,”
J. Am. Chem. Soc.
133
,
9246
(
2011
).
24.
K.
Qian
et al, “
Surface plasmon-driven water reduction: Gold nanoparticle size matters
,”
J. Am. Chem. Soc.
136
,
9842
(
2014
).
25.
D.
Ray
,
T. V.
Raziman
,
C.
Santschi
,
D.
Etezadi
,
H.
Altug
, and
O. J. F.
Martin
, “
Hybrid metal-dielectric metasurfaces for refractive index sensing
,”
Nano Lett.
20
,
8752
(
2020
).
26.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk’yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
).
27.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
,
207402
(
2008
).
28.
R.
Alaee
,
M.
Albooyeh
, and
C.
Rockstuhl
, “
Theory of metasurface based perfect absorbers
,”
J. Phys. D: Appl. Phys.
50
,
503002
(
2017
).
29.
D. G.
Baranov
,
D. A.
Zuev
,
S. I.
Lepeshov
,
O. V.
Kotov
,
A. E.
Krasnok
,
A. B.
Evlyukhin
, and
B. N.
Chichkov
, “
All-dielectric nanophotonics: The quest for better materials and fabrication techniques
,”
Optica
4
,
814
(
2017
).
30.
E.
Cortés
,
F. J.
Wendisch
,
L.
Sortino
,
A.
Mancini
,
S.
Ezendam
,
S.
Saris
,
L.
de S Menezes
,
A.
Tittl
,
H.
Ren
, and
S. A.
Maier
, “
Optical metasurfaces for energy conversion
,”
Chem. Rev.
122
,
15082
(
2022
).
31.
F. A.
Chaudhry
,
L.
Escandell
,
E.
López-Fraguas
,
R.
Vergaz
,
J. M.
Sánchez-Pena
, and
B.
García-Cámara
, “
Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles
,”
Sci. Rep.
12
,
9240
(
2022
).
32.
L.
Zhu
,
K.
Liu
,
T.
Hu
,
W.
Dong
,
Z.
Chen
, and
Z.
Wang
, “
UV-visible photocurrent enhancement using metal–semiconductor–metal with symmetric and asymmetric double Schottky barriers
,”
Nanoscale
10
,
12848
(
2018
).
33.
O.
Mitrofanov
,
L. L.
Hale
,
P. P.
Vabishchevich
,
T. S.
Luk
,
S. J.
Addamane
,
J. L.
Reno
, and
I.
Brener
, “
Perfectly absorbing dielectric metasurfaces for photodetection
,”
APL Photonics
5
,
101304
(
2020
).
34.
L.
Hale
,
T.
Siday
,
P. P.
Vabishchevich
,
C. T.
Harris
,
T. S.
Luk
,
J. L.
Reno
,
I.
Brener
, and
O.
Mitrofanov
, “
Efficient terahertz detection with perfectly-absorbing metasurface
,” in
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
(
IEEE
,
Paris, France
,
2019
), pp.
1
2
.
35.
S.
Liu
,
G. A.
Keeler
,
J. L.
Reno
,
M. B.
Sinclair
, and
I.
Brener
, “
III–V semiconductor nanoresonators—A new strategy for passive, active, and nonlinear all-dielectric metamaterials
,”
Adv. Opt. Mater.
4
,
1457
(
2016
).
36.
B.
Auguié
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
37.
S.
Liu
et al, “
Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces
,”
Nano Lett.
16
,
5426
(
2016
).
38.
L.
Hüttenhofer
,
M.
Golibrzuch
,
O.
Bienek
,
F. J.
Wendisch
,
R.
Lin
,
M.
Becherer
,
I. D.
Sharp
,
S. A.
Maier
, and
E.
Cortés
, “
Metasurface photoelectrodes for enhanced solar fuel generation
,”
Adv. Energy Mater.
11
,
2102877
(
2021
).
39.
L.
Hüttenhofer
,
F.
Eckmann
,
A.
Lauri
,
J.
Cambiasso
,
E.
Pensa
,
Y.
Li
,
E.
Cortés
,
I. D.
Sharp
, and
S. A.
Maier
, “
Anapole excitations in oxygen-vacancy-rich TiO2–x nanoresonators: Tuning the absorption for photocatalysis in the visible spectrum
,”
ACS Nano
14
,
2456
(
2020
).
40.
S. J.
Kim
,
I.
Thomann
,
J.
Park
,
J.-H.
Kang
,
A. P.
Vasudev
, and
M. L.
Brongersma
, “
Light trapping for solar fuel generation with Mie resonances
,”
Nano Lett.
14
,
1446
(
2014
).
41.
K.
Appavoo
,
M.
Liu
,
C. T.
Black
, and
M. Y.
Sfeir
, “
Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy
,”
Nano Lett.
15
,
1076
(
2015
).
42.
D.
Neshev
and
I.
Aharonovich
, “
Optical metasurfaces: New generation building blocks for multi-functional optics
,”
Light Sci. Appl.
7
,
58
(
2018
).
43.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley
,
Hoboken, NJ
,
2005
).
44.
Z.
Chen
,
H. N.
Dinh
, and
E.
Miller
,
Photoelectrochemical Water Splitting
(
Springer New York
,
New York, NY
,
2013
).
45.
F. R. F.
Fan
and
A. J.
Bard
, “
Semiconductor electrodes. 24. Behavior of photoelectrochemical cells based on p-type gallium arsenide in aqueous solutions
,”
J. Am. Chem. Soc.
102
,
3677
(
1980
).
46.
J. H.
Luscombe
and
C. L.
Frenzen
, “
Depletion lengths in semiconductor nanostructures
,”
Solid-State Electron.
46
,
885
(
2002
).
47.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
,”
Phys. Rev. B
84
,
235429
(
2011
).
48.
J.
Qiu
,
G.
Zeng
,
M.-A.
Ha
,
B.
Hou
,
M.
Mecklenburg
,
H.
Shi
,
A. N.
Alexandrova
, and
S. B.
Cronin
, “
Microscopic study of atomic layer deposition of TiO2 on GaAs and its photocatalytic application
,”
Chem. Mater.
27
,
7977
(
2015
).
49.
J.
Qiu
,
G.
Zeng
,
M.
Ge
,
S.
Arab
,
M.
Mecklenburg
,
B.
Hou
,
C.
Shen
,
A. V.
Benderskii
, and
S. B.
Cronin
, “
Correlation of Ti3+ states with photocatalytic enhancement in TiO2-passivated p-GaAs
,”
J. Catal.
337
,
133
(
2016
).

Supplementary Material

You do not currently have access to this content.