Density functional approximations to the exchange–correlation energy can often identify strongly correlated systems and estimate their energetics through energy-minimizing symmetry-breaking. In particular, the binding energy curve of the strongly correlated chromium dimer is described qualitatively by the local spin density approximation (LSDA) and almost quantitatively by the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA), where the symmetry breaking is antiferromagnetic for both. Here, we show that a full Perdew–Zunger self-interaction-correction (SIC) to LSDA seems to go too far by creating an unphysical symmetry-broken state, with effectively zero magnetic moment but non-zero spin density on each atom, which lies ∼4 eV below the antiferromagnetic solution. A similar symmetry-breaking, observed in the atom, better corresponds to the 3d↑↑4s3d↓↓4s configuration than to the standard 3d↑↑↑↑↑4s. For this new solution, the total energy of the dimer at its observed bond length is higher than that of the separated atoms. These results can be regarded as qualitative evidence that the SIC needs to be scaled down in many-electron regions.

1.
P. E.
Siegbahn
and
M. R.
Blomberg
, “
Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods
,”
Chem. Rev.
100
,
421
438
(
2000
).
2.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
712
(
2012
).
3.
E.
Gabriel
,
D.
Hou
,
E.
Lee
, and
H.
Xiong
, “
Multiphase layered transition metal oxide positive electrodes for sodium ion batteries
,”
Energy Sci. Eng.
10
,
1672
1705
(
2022
).
4.
A.
Rohrbach
,
J.
Hafner
, and
G.
Kresse
, “
Electronic correlation effects in transition-metal sulfides
,”
J. Phys.: Condens. Matter
15
,
979
(
2003
).
5.
S. M.
Casey
and
D. G.
Leopold
, “
Negative ion photoelectron spectroscopy of chromium dimer
,”
J. Phys. Chem.
97
,
816
830
(
1993
).
6.
G.
Barcza
,
M. A.
Werner
,
G.
Zaránd
,
A.
Pershin
,
Z.
Benedek
,
O.
Legeza
, and
T.
Szilvási
, “
Toward large-scale restricted active space calculations inspired by the Schmidt decomposition
,”
J. Phys. Chem. A
126
,
9709
9718
(
2022
).
7.
N.
Zhang
,
W.
Liu
, and
M. R.
Hoffmann
, “
Iterative configuration interaction with selection
,”
J. Chem. Theory Comput.
16
,
2296
2316
(
2020
).
8.
T.
Tsuchimochi
and
S. L.
Ten-No
, “
Second-order perturbation theory with spin-symmetry-projected Hartree–Fock
,”
J. Chem. Theory Comput.
15
,
6688
6702
(
2019
).
9.
T.
Tsuchimochi
and
S.
Ten-No
, “
Bridging single- and multireference domains for electron correlation: Spin-extended coupled electron pair approximation
,”
J. Chem. Theory Comput.
13
,
1667
1681
(
2017
).
10.
G.
Li Manni
,
A. L.
Dzubak
,
A.
Mulla
,
D. W.
Brogden
,
J. F.
Berry
, and
L.
Gagliardi
, “
Assessing metal–metal multiple bonds in Cr–Cr, Mo–Mo, and W–W compounds and a hypothetical U–U compound: A quantum chemical study comparing DFT and multireference methods
,”
Chem. - Eur. J.
18
,
1737
1749
(
2012
).
11.
S.
Vancoillie
,
P. Å.
Malmqvist
, and
V.
Veryazov
, “
Potential energy surface of the chromium dimer re-re-revisited with multiconfigurational perturbation theory
,”
J. Chem. Theory Comput.
12
,
1647
1655
(
2016
).
12.
B. O.
Roos
, “
The ground state potential for the chromium dimer revisited
,”
Collect. Czech. Chem. Commun.
68
,
265
274
(
2003
).
13.
G.
Li Manni
,
D.
Ma
,
F.
Aquilante
,
J.
Olsen
, and
L.
Gagliardi
, “
SplitGAS method for strong correlation and the challenging case of Cr2
,”
J. Chem. Theory Comput.
9
,
3375
3384
(
2013
).
14.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
15.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
16.
K.
Sharkas
,
K.
Wagle
,
B.
Santra
,
S.
Akter
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
,
J. P.
Perdew
, and
J. E.
Peralta
, “
Self-interaction error overbinds water clusters but cancels in structural energy differences
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11283
11288
(
2020
).
17.
C.
Toher
,
A.
Filippetti
,
S.
Sanvito
, and
K.
Burke
, “
Self-interaction errors in density-functional calculations of electronic transport
,”
Phys. Rev. Lett.
95
,
146402
(
2005
).
18.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
19.
R.
Shinde
,
S. S.
Yamijala
, and
B. M.
Wong
, “
Improved band gaps and structural properties from Wannier–Fermi–Löwdin self-interaction corrections for periodic systems
,”
J. Phys.: Condens. Matter
33
,
115501
(
2020
).
20.
A.
Svane
and
O.
Gunnarsson
, “
Transition-metal oxides in the self-interaction–corrected density-functional formalism
,”
Phys. Rev. Lett.
65
,
1148
(
1990
).
21.
J. G.
Harrison
, “
Density functional calculations for atoms in the first transition series
,”
J. Chem. Phys.
79
,
2265
2269
(
1983
).
22.
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
, “
Self-interaction correction for density-functional theory of electronic energy bands of solids
,”
Phys. Rev. B
28
,
5992
(
1983
).
23.
K. P.
Withanage
,
K.
Sharkas
,
J. K.
Johnson
,
J. P.
Perdew
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Fermi–Löwdin orbital self-interaction correction of adsorption energies on transition metal ions
,”
J. Chem. Phys.
156
,
134102
(
2022
).
24.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
25.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
).
26.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the Fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
27.
H. R.
Larsson
,
H.
Zhai
,
C. J.
Umrigar
, and
G. K.-L.
Chan
, “
The chromium dimer: Closing a chapter of quantum chemistry
,”
J. Am. Chem. Soc.
144
,
15932
15937
(
2022
).
28.
G. E.
Scuseria
, “
Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2
,”
J. Chem. Phys.
94
,
442
447
(
1991
).
29.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
,
N. K.
Nepal
, and
A. D.
Kaplan
, “
Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2017850118
(
2021
).
30.
J. P.
Perdew
,
S. T. u. R.
Chowdhury
,
C.
Shahi
,
A. D.
Kaplan
,
D.
Song
, and
E. J.
Bylaska
, “
Symmetry breaking with the scan density functional describes strong correlation in the singlet carbon dimer
,”
J. Phys. Chem. A
127
,
384
389
(
2022
).
31.
T.
Hahn
,
S.
Schwalbe
,
J.
Kortus
, and
M. R.
Pederson
, “
Symmetry breaking within Fermi–Löwdin orbital self-interaction corrected density functional theory
,”
J. Chem. Theory Comput.
13
,
5823
5828
(
2017
).
32.
S.
Lehtola
,
M.
Head-Gordon
, and
H.
Jónsson
, “
Complex orbitals, multiple local minima, and symmetry breaking in Perdew–Zunger self-interaction corrected density functional theory calculations
,”
J. Chem. Theory Comput.
12
,
3195
3207
(
2016
).
33.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
(
1999
).
34.
B.
Delley
,
A. J.
Freeman
, and
D. E.
Ellis
, “
Metal-metal bonding in Cr-Cr and Mo-Mo dimers: Another success of local spin-density theory
,”
Phys. Rev. Lett.
50
,
488
491
(
1983
).
35.
D. C.
Patton
,
D. V.
Porezag
, and
M. R.
Pederson
, “
Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules
,”
Phys. Rev. B
55
,
7454
(
1997
).
36.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
37.
Y.
Zhang
,
J.
Furness
,
R.
Zhang
,
Z.
Wang
,
A.
Zunger
, and
J.
Sun
, “
Symmetry-breaking polymorphous descriptions for correlated materials without interelectronic U
,”
Phys. Rev. B
102
,
045112
(
2020
).
38.
M. M.
Goodgame
and
W. A.
Goddard
III
, “
The ‘sextuple’ bond of chromium dimer
,”
J. Phys. Chem.
85
,
215
217
(
1981
).
39.
M. M.
Goodgame
and
W. A.
Goddard
, “
Nature of Mo-Mo and Cr-Cr multiple bonds: A challenge for the local-density approximation
,”
Phys. Rev. Lett.
48
,
135
138
(
1982
).
40.
O. A.
Vydrov
,
G. E.
Scuseria
,
J. P.
Perdew
,
A.
Ruzsinszky
, and
G. I.
Csonka
, “
Scaling down the Perdew-Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
124
,
094108
(
2006
).
41.
B.
Santra
and
J. P.
Perdew
, “
Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
,”
J. Chem. Phys.
150
,
174106
(
2019
).
42.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
43.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Local-density Hartree–Fock theory of electronic states of molecules with self-interaction correction
,”
J. Chem. Phys.
80
,
1972
1975
(
1984
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
P.-O.
Löwdin
, “
On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals
,”
J. Chem. Phys.
18
,
365
375
(
1950
).
46.
K. P.
Withanage
,
K. A.
Jackson
, and
M. R.
Pederson
, “
Complex Fermi–Löwdin orbital self-interaction correction
,”
J. Chem. Phys.
156
,
231103
(
2022
).
47.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
et al, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
48.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms
,”
Phys. Rev. A
84
,
050501
(
2011
).
49.
A. V.
Ivanov
,
T. K.
Ghosh
,
E. O.
Jonsson
, and
H.
Jónsson
, “
Mn dimer can be described accurately with density functional calculations when self-interaction correction is applied
,”
J. Phys. Chem. Lett.
12
,
4240
4246
(
2021
).
50.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Ionization potentials and electron affinities in the Perdew–Zunger self-interaction corrected density-functional theory
,”
J. Chem. Phys.
122
,
184107
(
2005
).
51.
Y.
Yamamoto
,
C. M.
Diaz
,
L.
Basurto
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
,”
J. Chem. Phys.
151
,
154105
(
2019
).
52.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules
,”
J. Chem. Phys.
137
,
124102
(
2012
).
53.
S.
Romero
,
Y.
Yamamoto
,
T.
Baruah
, and
R. R.
Zope
, “
Local self-interaction correction method with a simple scaling factor
,”
Phys. Chem. Chem. Phys.
23
,
2406
2418
(
2021
).
54.
S.
Akter
,
Y.
Yamamoto
,
R. R.
Zope
, and
T.
Baruah
, “
Static dipole polarizabilities of polyacenes using self-interaction-corrected density functional approximations
,”
J. Chem. Phys.
154
,
214108
(
2021
).
55.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
(
1990
).
56.
M. R.
Pederson
and
T.
Baruah
, “
Chapter eight—Self-interaction corrections within the Fermi-orbital-based formalism
,”
Adv. At., Mol., Opt. Phys.
64
,
153
180
(
2015
).
57.
M. R.
Pederson
,
T.
Baruah
,
D.-y.
Kao
, and
L.
Basurto
, “
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
,”
J. Chem. Phys.
144
,
164117
(
2016
).
58.
R. R.
Zope
,
T.
Baruah
,
Y.
Yamamoto
,
L.
Basurto
,
C.
Diaz
,
J.
Peralta
, and
K. A.
Jackson
, FLOSIC 0.2 based on the NRLMOL code of M. R. Pederson.
59.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li–Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
60.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
61.
J.
Bernholc
and
N. A. W.
Holzwarth
, “
Local spin-density description of multiple metal bonding - Mo2 and Cr2
,”
Phys. Rev. Lett.
50
,
1451
1454
(
1983
).
62.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
63.
Y.
Yamamoto
,
T.
Baruah
,
P.-H.
Chang
,
S.
Romero
, and
R. R.
Zope
, “
Self-consistent implementation of locally scaled self-interaction-correction method
,”
J. Chem. Phys.
158
,
064114
(
2023
).
64.
E. B.
Saloman
, “
Energy levels and observed spectral lines of neutral and singly ionized chromium, Cr I and Cr II
,”
J. Phys. Chem. Ref. Data
41
,
043103
(
2012
).
65.
M. R.
Pederson
,
A. I.
Johnson
,
K. P. K.
Withanage
,
S.
Dolma
,
G. B.
Flores
,
Z.
Hooshmand
,
K.
Khandal
,
P. O.
Lasode
,
T.
Baruah
, and
K. A.
Jackson
, “
Downward quantum learning from element 118: Automated generation of Fermi–Löwdin orbitals for all atoms
,”
J. Chem. Phys.
158
,
084101
(
2023
).
66.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Effect of the Perdew–Zunger self-interaction correction on the thermochemical performance of approximate density functionals
,”
J. Chem. Phys.
121
,
8187
8193
(
2004
).
67.
M. R.
Pederson
,
F.
Reuse
, and
S. N.
Khanna
, “
Magnetic transition in Mnn (n = 2–8) clusters
,”
Phys. Rev. B
58
,
5632
5636
(
1998
).
68.
E. R.
Johnson
and
A. D.
Becke
, “
Communication: DFT treatment of strong correlation in 3d transition-metal diatomics
,”
J. Chem. Phys.
146
,
021105
(
2017
).
69.
K.
Dema
,
Z.
Hooshmand
, and
M. R.
Pederson
, “
Electronic and magnetic signatures of low-lying spin-flip excitonic states of Mn12O12-acetate
,”
Polyhedron
206
,
115332
(
2021
).
70.
C. A.
Baumann
,
R. J.
Van Zee
,
S. V.
Bhat
, and
W.
Weltner
, Jr.
, “
ESR of Mn2 and Mn5 molecules in rare-gas matrices
,”
J. Chem. Phys.
78
,
190
199
(
1983
).
71.
Z.
Hooshmand
,
J. G.
Bravo Flores
, and
M. R.
Pederson
, “
Orbital dependent complications for close vs well-separated electrons in diradicals
,”
J. Chem. Phys.
159
,
234121
(
2023
).
72.
M. R.
Pederson
and
S. N.
Khanna
, “
Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules
,”
Phys. Rev. B
60
,
9566
9572
(
1999
).
73.
J. W.
Linnett
, “
A modification of the Lewis-Langmuir octet rule
,”
J. Am. Chem. Soc.
83
,
2643
2653
(
1961
).
You do not currently have access to this content.