The notions of ionicity and covalency of chemical bonds, effective atomic charges, and decomposition of the cohesive energy into ionic and covalent terms are fundamental yet elusive. For example, different approaches give different values of atomic charges. Pursuing the goal of formulating a universal approach based on firm physical grounds (first-principles or non-empirical), we develop a formalism based on Wannier functions with atomic orbital symmetry and capable of defining these notions and giving numerically robust results that are in excellent agreement with traditional chemical thinking. Unexpectedly, in diamond-like boron phosphide (BP), we find charges of +0.68 on phosphorus and −0.68 on boron atoms, and this anomaly is explained by the Zintl–Klemm nature of this compound. We present a simple model that includes energies of the highest occupied cationic and lowest unoccupied anionic atomic orbitals, coordination numbers, and strength of interatomic orbital overlap. This model captures the essential physics of bonding and accurately reproduces all our results, including anomalous BP.

1.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornell University Press
,
Ithaca, NY
,
1960
).
2.
C. H.
Henry
and
J. J.
Hopfield
, “
Raman scattering by polaritons
,”
Phys. Rev. Lett.
15
,
964
(
1965
).
3.
C. Y.
Wang
,
S.
Sharma
,
E. K. U.
Gross
, and
J. K.
Dewhurst
, “
Dynamical Born effective charges
,”
Phys. Rev. B
106
,
L180303
(
2022
).
4.
L.
Pauling
, “
The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms
,”
J. Am. Chem. Soc.
54
(
9
),
3570
3582
(
1932
).
5.
V. S.
Urusov
,
Energetic Crystal Chemistry
(
Nauka
,
Moscow
,
1975
), p.
335
.
6.
C.
Tantardini
and
A. R.
Oganov
, “
Thermochemical electronegativities of the elements
,”
Nat. Commun.
12
,
2087
(
2021
).
7.
R. S.
Mulliken
, “
A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities
,”
J. Chem. Phys.
2
,
782
793
(
1934
).
8.
S. S.
Batsanov
, “
Dielectric methods of studying the chemical bond and the concept of electronegativity
,”
Russ. Chem. Rev.
51
,
684
697
(
1982
).
9.
S. S.
Batsanov
and
A. S.
Batsanov
, “
Solid-state electronegativity of atoms: New approaches
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
77
,
495
505
(
2021
).
10.
L. C.
Allen
, “
Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms
,”
J. Am. Chem. Soc.
111
,
9003
9014
(
1989
).
11.
K. Y.
Li
,
X. T.
Wang
,
F. F.
Zhang
, and
D. F.
Xue
, “
Electronegativity identification of novel superhard materials
,”
Phys. Rev. Lett.
100
,
235504
(
2008
).
12.
A. O.
Lyakhov
and
A. R.
Oganov
, “
Evolutionary search for superhard materials applied to forms of carbon and TiO2
,”
Phys. Rev. B
84
,
092103
(
2011
).
13.
E. C. M.
Chen
,
W. E.
Wentworth
, and
J. A.
Ayala
, “
The relationship between the Mulliken electronegativities of the elements and the work functions of metals and nonmetals
,”
J. Chem. Phys.
67
,
2642
2647
(
1977
).
14.
X.
Dong
,
A. R.
Oganov
,
H.
Cui
,
X.-F.
Zhou
, and
H.-T.
Wang
, “
Electronegativity and chemical hardness of elements under pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2117416119
(
2022
).
15.
R. L.
Matcha
, “
Theory of the chemical bond. 6. Accurate relationship between bond energies and electronegativity differences
,”
J. Am. Chem. Soc.
105
,
4859
4862
(
1983
).
16.
J.
Meister
and
W. H. E.
Schwarz
, “
Principal components of ionicity
,”
J. Phys. Chem.
98
,
8245
8252
(
1994
).
17.
B.
Szigeti
, “
Polarisability and dielectric constant of ionic crystals
,”
Trans. Faraday Soc.
45
,
155
166
(
1949
).
18.
G.
Wannier
, “
The structure of electronic excitation levels in insulating crystals
,”
Phys. Rev.
52
,
191
197
(
1937
).
19.
D.
Korotin
et al, “
Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials
,”
Eur. Phys. J. B
65
,
91
98
(
2008
).
20.
L.
Jiang
,
S. V.
Levchenko
, and
A. M.
Rappe
, “
Rigorous definition of oxidation states of ions in solids
,”
Phys. Rev. Lett.
108
,
166403
(
2012
).
21.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
22.
G.
Prandini
,
A.
Marrazzo
,
I. E.
Castelli
,
N.
Mounet
, and
N.
Marzari
, “
Precision and efficiency in solid-state pseudopotential calculations
,”
npj Comput. Mater.
4
,
72
(
2018
).
23.
W. L.
Meerts
,
F. H.
De Leeuw
, and
A.
Dymanus
, “
Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy
,”
Chem. Phys.
22
,
319
324
(
1977
).
24.
F.
Blanco
,
I.
Alkorta
,
M.
Solimannejad
, and
J.
Elguero
, “
Theoretical study of the 1:1 complexes between carbon monoxide and hypohalous acids
,”
J. Phys. Chem. A
113
,
3237
3244
(
2009
).
25.
A. A.
Mikhailova
,
S. V.
Lepeshkin
,
V. S.
Baturin
,
A. P.
Maltsev
,
Y. A.
Uspenskii
, and
A. R.
Oganov
, “
Ultralow reaction barriers for CO oxidation in Cu–Au nanoclusters
,”
Nanoscale
15
,
13699
13707
(
2023
).
26.
D.
Touat
,
M.
Ferhat
, and
A.
Zaoui
, “
Dynamical behaviour in the boron III–V group: A first-principles study
,”
J. Phys.: Condens. Matter
18
,
3647
3654
(
2006
).
27.
V. I.
Anisimov
,
A. R.
Oganov
,
M. A.
Mazannikova
,
D. Y.
Novoselov
, and
Dm. M.
Korotin
, “
Formal valence, charge distribution, and chemical bond in a compound with a high oxidation state: KMnO4
,”
JETP Lett.
117
(
5
),
377
383
(
2023
).
28.
W.
Zhang
,
A. R.
Oganov
,
A. F.
Goncharov
,
Q.
Zhu
,
S. E.
Boulfelfel
,
A. O.
Lyakhov
,
E.
Stavrou
,
M.
Somayazulu
,
V. B.
Prakapenka
, and
Z.
Konôpková
, “
Unexpected stable stoichiometries of sodium chlorides
,”
Science
342
,
1502
1505
(
2013
).
29.
X.
Dong
,
A. R.
Oganov
,
A. F.
Goncharov
,
E.
Stavrou
,
S.
Lobanov
,
G.
Saleh
,
G.-R.
Qian
,
Q.
Zhu
,
C.
Gatti
,
V. L.
Deringer
,
R.
Dronskowski
,
X.-F.
Zhou
,
V. B.
Prakapenka
,
Z.
Konôpková
,
I. A.
Popov
,
A. I.
Boldyrev
, and
H.-T.
Wang
, “
A stable compound of helium and sodium at high pressure
,”
Nat. Chem.
9
,
440
445
(
2017
).
You do not currently have access to this content.