The crystallization process of methane hydrates in a confined geometry resembling seabed porous silica sedimentary conditions has been studied using molecular dynamics simulations. With this objective in mind, a fully atomistic quartz silica slit pore has been designed, and the temperature stability of a methane hydrate crystalline seed in the presence of water and guest molecule methane has been analyzed. NaCl ion pairs have been added in different concentrations, simulating salinity conditions up to values higher than average oceanic conditions. The structure obtained when the hydrate crystallizes inside the pore is discussed, paying special attention to the presence of ionic doping inside the hydrate and the subsequent induced structural distortion. The shift in the hydrate stability conditions due to the increasing water salinity is discussed and compared with the case of unconfined hydrate, concluding that the influence of the confinement geometry and pore hydrophilicity produces a larger deviation in the confined hydrate phase equilibria.

1.
Natural Gas Hydrate in Oceanic and Permafrost Environments
, 1st ed., edited by
M. D.
Max
(
Springer Dordrecht
,
Florida
,
2011
).
2.
T.
Collett
,
J.-J.
Bahk
,
R.
Baker
,
R.
Boswell
,
D.
Divins
,
M.
Frye
,
D.
Goldberg
,
J.
Husebø
,
C.
Koh
,
M.
Malone
,
M.
Morell
,
G.
Myers
,
C.
Shipp
, and
M.
Torres
, “
Methane hydrates in nature—Current knowledge and challenges
,”
J. Chem. Eng. Data
60
,
319
329
(
2015
).
3.
R.
Boswell
,
C.
Shipp
,
T.
Reichel
,
D.
Shelander
,
T.
Saeki
,
M.
Frye
,
W.
Shedd
,
T. S.
Collett
, and
D. R.
McConnell
, “
Prospecting for marine gas hydrate resources
,”
Interpretation
4
,
SA13
SA24
(
2016
).
4.
T. A.
Minshull
,
H.
Marín-Moreno
,
P.
Betlem
,
J.
Bialas
,
S.
Bünz
,
E.
Burwicz
,
A. L.
Cameselle
,
G.
Cifci
,
M.
Giustiniani
,
J. I. T.
Hillman
,
S.
Hölz
,
J. R.
Hopper
,
G.
Ion
,
R.
León
,
V.
Magalhaes
,
Y.
Makovsky
,
M.-P.
Mata
,
M. D.
Max
,
T.
Nielsen
,
S.
Okay
,
I.
Ostrovsky
,
N.
O’Neill
,
L. M.
Pinheiro
,
A. A.
Plaza-Faverola
,
D.
Rey
,
S.
Roy
,
K.
Schwalenberg
,
K.
Senger
,
S.
Vadakkepuliyambatta
,
A.
Vasilev
, and
J.-T.
Vázquez
, “
Hydrate occurrence in Europe: A review of available evidence
,”
Mar. Pet. Geol.
111
,
735
764
(
2020
).
5.
E. D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
,
Chemical Industries
, 3rd ed (
CRC Press
,
2007
).
6.
R. K.
McMullan
and
G. A.
Jeffrey
, “
Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate
,”
J. Chem. Phys.
42
,
2725
2732
(
1965
).
7.
T. C. W.
Mak
and
R. K.
McMullan
, “
Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide
,”
J. Chem. Phys.
42
,
2732
2737
(
1965
).
8.
J. A.
Ripmeester
,
J. S.
Tse
,
C. I.
Ratcliffe
, and
B. M.
Powell
, “
A new clathrate hydrate structure
,”
Nature
325
,
135
136
(
1987
).
9.
K. A.
Kvenvolden
, “
Methane hydrates and global climate
,”
Global Biogeochem. Cycles
2
,
221
229
, (
1988
).
10.
Y. F.
Makogon
,
S. A.
Holditch
, and
T. Y.
Makogon
, “
Natural gas-hydrates—A potential energy source for the 21st century
,”
J. Pet. Sci. Eng.
56
,
14
31
(
2007
).
11.
R.
Boswell
, “
Is gas hydrate energy within reach?
,”
Science
325
,
957
958
(
2009
).
12.
G. J.
Moridis
,
T. S.
Collett
,
M.
Pooladi-Darvish
,
S.
Hancock
,
C.
Santamarina
,
R.
Boswell
,
T.
Kneafsey
,
J.
Rutqvist
,
M. B.
Kowalsky
,
M. T.
Reagan
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
, “
Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits
,”
SPE Reservoir Eval. Eng.
14
,
76
112
(
2011
).
13.
A. K.
Sum
,
C. A.
Koh
, and
E. D.
Sloan
, “
Clathrate hydrates: From laboratory science to engineering practice
,”
Ind. Eng. Chem. Res.
48
,
7457
7465
(
2009
).
14.
Z. R.
Chong
,
S. H. B.
Yang
,
P.
Babu
,
P.
Linga
, and
X.-S.
Li
, “
Review of natural gas hydrates as an energy resource: Prospects and challenges
,”
Appl. Energy
162
,
1633
1652
(
2016
).
15.
P.
Babu
,
P.
Linga
,
R.
Kumar
, and
P.
Englezos
, “
A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture
,”
Energy
85
,
261
279
(
2015
).
16.
J.
Zheng
,
Z. R.
Chong
,
M. F.
Qureshi
, and
P.
Linga
, “
Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization
,”
Energy Fuels
34
,
10529
10546
(
2020
).
17.
H. P.
Veluswamy
,
R.
Kumar
, and
P.
Linga
, “
Hydrogen storage in clathrate hydrates: Current state of the art and future directions
,”
Appl. Energy
122
,
112
132
(
2014
).
18.
H. P.
Veluswamy
,
A.
Kumar
,
Y.
Seo
,
J. D.
Lee
, and
P.
Linga
, “
A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
,”
Appl. Energy
216
,
262
285
(
2018
).
19.
P.
Babu
,
A.
Nambiar
,
T.
He
,
I. A.
Karimi
,
J. D.
Lee
,
P.
Englezos
, and
P.
Linga
, “
A review of clathrate hydrate based desalination to strengthen energy-water nexus
,”
ACS Sustain. Chem. Eng.
6
,
8093
8107
(
2018
).
20.
E. D.
Sloan
, “
A changing hydrate paradigm—From apprehension to avoidance to risk management
,”
Fluid Phase Equilib.
228–229
,
67
74
(
2005
).
21.
B. C.
Barnes
and
A. K.
Sum
, “
Advances in molecular simulations of clathrate hydrates
,”
Curr. Opin. Chem. Eng.
2
,
184
190
(
2013
).
22.
N. J.
English
and
J. M. D.
MacElroy
, “
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges
,”
Chem. Eng. Sci.
121
,
133
156
(
2015
).
23.
A.
Vidal-Vidal
,
M.
Pérez-Rodríguez
,
J.-P.
Torré
, and
M. M.
Piñeiro
, “
DFT calculation of the potential energy landscape topology and Raman spectra of type I CH4 and CO2 hydrates
,”
Phys. Chem. Chem. Phys.
17
,
6963
6975
(
2015
).
24.
A.
Vidal-Vidal
,
M.
Pérez-Rodríguez
, and
M. M.
Piñeiro
, “
Direct transition mechanism for molecular diffusion in gas hydrates
,”
RSC Adv.
6
,
1966
1972
(
2016
).
25.
M.
Pérez-Rodríguez
,
J.
Otero-Fernández
,
A.
Comesaña
,
A. M.
Fernández-Fernández
, and
M. M.
Piñeiro
, “
Simulation of capture and release processes of hydrogen by β-hydroquinone clathrate
,”
ACS Omega
3
,
18771
18782
(
2018
).
26.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
27.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
28.
J. M.
Míguez
,
M. M.
Conde
,
J.-P.
Torré
,
F. J.
Blas
,
M. M.
Piñeiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
29.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
30.
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system
,”
Phys. Chem. Chem. Phys.
18
,
23538
23548
(
2016
).
31.
J.
Grabowska
,
S.
Blázquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
8570
(
2022
).
32.
J.
Algaba
,
I. M.
Zerón
,
J. M.
Míguez
,
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
C.
Vega
, and
F. J.
Blas
, “
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
,”
J. Chem. Phys.
158
,
184703
(
2023
).
33.
A. M.
Fernández-Fernández
,
M.
Pérez-Rodríguez
,
A.
Comesaña
, and
M. M.
Piñeiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
433
(
2019
).
34.
S.
Blázquez
,
C.
Vega
, and
M. M.
Conde
, “
Three phase equilibria of themethane hydrate in NaCl solutions: A simulation study
,”
J. Mol. Liq.
383
(
2023
).
35.
I. M.
Zeron
,
J. L. F.
Abascal
, and
C.
Vega
, “
A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl, and SO42 in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions
,”
J. Chem. Phys.
151
,
134504
(
2019
).
36.
S.
Blázquez
,
M. M.
Conde
,
J. L. F.
Abascal
, and
C.
Vega
, “
The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F, Br, I, Rb+, and Cs+
,”
J. Chem. Phys.
156
,
044505
(
2022
).
37.
T.
Uchida
,
T.
Ebinuma
, and
T.
Ishizaki
, “
Dissociation condition measurements of methane hydrate in confined small pores of porous glass
,”
J. Phys. Chem. B
103
,
3659
3662
(
1999
).
38.
X.
Zheng
,
L.
Wang
,
Z.
Li
,
W.
Pang
,
Q.
Li
,
G.
Chen
, and
B.
Liu
, “
Molecular insight into the dissociation and re-formation of methane hydrate in silica nano-slit
,”
Fuel
324
,
124718
(
2022
).
39.
Z.
Zhang
,
P. G.
Kusalik
,
C.
Liu
, and
N.
Wu
, “
Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity
,”
Energy
285
,
129414
(
2023
).
40.
Z.
Zhang
,
P. G.
Kusalik
,
N.
Wu
,
C.
Liu
, and
Y.
Zhang
, “
Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores
,”
Energy
257
,
124738
(
2022
).
41.
W.
Hu
,
C.
Chen
,
C.
Cheng
,
T.
Jin
,
X.
Wu
,
H.
Li
,
Y.
Zhu
, and
Z.
Jing
, “
Molecular simulation study of methane hydrate decomposition in the presence of hydrophilic and hydrophobic solid surfaces
,”
J. Mol. Liq.
383
,
122129
(
2023
).
42.
G.
Wu
,
H.
Ji
,
L.
Tian
, and
D.
Chen
, “
Effects of salt ions on the methane hydrate formation and dissociation in the clay pore water and bulk water
,”
Energy Fuels
32
,
12486
12494
(
2018
).
43.
Á.
Fernández-Fernández
,
M. M.
Conde
,
G.
Pérez-Sánchez
,
M.
Pérez-Rodríguez
, and
M. M.
Piñeiro
, “
Molecular simulation of methane hydrate growth confined into a silica pore
,”
J. Mol. Liq.
362
,
1
(
2022
).
44.
Á.
Fernández-Fernández
,
M.
Pérez-Rodríguez
, and
M. M.
Piñeiro
, “
Molecular dynamics of fluoromethane type I hydrates
,”
J. Mol. Liq.
339
,
1
(
2021
).
45.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García-Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
46.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
III
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
47.
R. T.
Downs
and
M.
Hall-Wallace
, “
The American Mineralogist crystal structure database
,”
Am. Mineral.
88
,
247
250
(
2003
).
48.
Y.
Jing
,
L.
Wei
,
Y.
Wang
, and
Y.
Yu
, “
Molecular simulation of MCM-41: Structural properties and adsorption of CO2, N2 and flue gas
,”
Chem. Eng. J.
220
,
264
275
(
2013
).
49.
C. D.
Williams
,
K. P.
Travis
,
N. A.
Burton
, and
J. H.
Harding
, “
A new method for the generation of realistic atomistic models of siliceous MCM-41
,”
Microporous Mesoporous Mater.
228
,
215
223
(
2016
).
50.
M.
Azenha
,
B.
Szefczyk
,
D.
Loureiro
,
P.
Kathirvel
,
M. N. D. S.
Cordeiro
, and
A.
Fernando-Silva
, “
Molecular dynamics simulations of pregelification mixtures for the production of imprinted xerogels
,”
Langmuir
27
,
5062
5070
(
2011
).
51.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
52.
A. L.
Benavides
,
J. L.
Aragonés
, and
C.
Vega
, “
Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,”
J. Chem. Phys.
144
,
124504
(
2016
).
53.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
, “
GROMACS: A message-passing parallel molecular dynamics implementation
,”
Comput. Phys. Commun.
91
,
43
56
(
1995
).
54.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
, “
GROMACS 3.0: A package for molecular simulation and trajectory analysis
,”
J. Mol. Model.
7
,
306
317
(
2001
).
55.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
56.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
57.
S.
Páll
,
M. J.
Abraham
,
C.
Kutzner
,
B.
Hess
, and
E.
Lindahl
, “
Tackling exascale software challenges in molecular dynamics simulations with GROMACS
,” in
Lecture Notes in Computer Science
(
Springer International Publishing
,
2015
), pp.
3
27
.
58.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
59.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press, Inc.
,
Orlando, FL
,
2001
).
60.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
61.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
62.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
63.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
64.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
65.
S.
Nosé
and
M. L.
Klein
, “
Constant pressure molecular dynamics for molecular systems
,”
Mol. Phys.
50
,
1055
1076
(
1983
).
66.
L. A.
Baez
and
P.
Clancy
, “
Computer simulation of the crystal growth and dissolution of natural gas hydrates
,”
Ann. N. Y. Acad. Sci.
715
,
177
186
(
1994
).
67.
P. M.
Rodger
,
T. R.
Forester
, and
W.
Smith
, “
Simulations of the methane hydrate/methane gas interface near hydrate forming conditions
,”
Fluid Phase Equilib.
116
,
326
332
(
1996
).
68.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
69.
C.
Moon
,
R. W.
Hawtin
, and
P. M.
Rodger
, “
Nucleation and control of clathrate hydrates: Insights from simulation
,”
Faraday Discuss.
136
,
367
382
(
2007
).
70.
J. L.
de Roo
,
C. J.
Peters
,
R. N.
Lichtenthaler
, and
G. A. M.
Diepen
, “
Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure
,”
AIChE J.
29
,
651
657
(
1983
).
71.
M. D.
Jager
, and
E. D.
Sloan
, “
The effect of pressure on methane hydration in pure water and sodium chloride solutions
,”
Fluid Phase Eq.
185
,
89
99
(
2001
).
72.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
Spontaneous NaCl-doped ice at seawater conditions: Focus on the mechanisms of ion inclusion
,”
Phys. Chem. Chem. Phys.
19
,
9566
9574
(
2017
).

Supplementary Material

You do not currently have access to this content.