Loop formation in complex environments is crucially important to many biological processes in life. In the present work, we adopt three-dimensional Langevin dynamics simulations to investigate passive and active polymer looping kinetics in crowded media featuring polymer–crowder attraction. We find polymers undergo a remarkable coil–globule–coil transition, highlighted by a marked change in the Flory scaling exponent of the gyration radius. Meanwhile, looping time as a function of the crowder’s volume fraction demonstrates an apparent non-monotonic alteration. A small number of crowders induce a compact structure, which largely facilitates the looping process. While a large number of crowders heavily impede end-to-end diffusion, looping kinetics is greatly inhibited. For a self-propelled chain, we find that the attractive crowding triggers an unusual activity effect on looping kinetics. Once a globular state is formed, activity takes an effort to open the chain from the compact structure, leading to an unexpected activity-induced inhibition of looping. If the chain maintains a coil state, the dominant role of activity is to enhance diffusivity and, thus, speed up looping kinetics. The novel conformational change and looping kinetics of both passive and active polymers in the presence of attractive crowding highlight a rather distinct scenario that has no analogy in a repulsive crowding counterpart. The underlying mechanism enriches our understanding of the crucial role of attractive interactions in modulating polymer structure and dynamics.

1.
D.
Balchin
,
M.
Hayer-Hartl
, and
F. U.
Hartl
,
Science
353
,
aac4354
(
2016
).
2.
J.
Adamcik
and
R.
Mezzenga
,
Angew. Chem., Int. Ed.
57
,
8370
8382
(
2018
).
3.
D.
Chakravarty
,
J. W.
Schafer
, and
L. L.
Porter
,
Protein Sci.
32
,
e4596
(
2023
).
4.
J.
Stavans
and
A.
Oppenheim
,
Phys. Biol.
3
,
R1
R10
(
2006
).
5.
G.-W.
Li
,
O. G.
Berg
, and
J.
Elf
,
Nat. Phys.
5
,
294
297
(
2009
).
7.
V. K.
Mutalik
,
J. C.
Guimaraes
,
G.
Cambray
,
C.
Lam
,
M. J.
Christoffersen
,
Q.-A.
Mai
,
A. B.
Tran
,
M.
Paull
,
J. D.
Keasling
,
A. P.
Arkin
, and
D.
Endy
,
Nat. Methods
10
,
354
360
(
2013
).
8.
O.
Stiehl
,
K.
Weidner-Hertrampf
, and
M.
Weiss
,
New J. Phys.
15
,
113010
(
2013
).
9.
N. A.
Denesyuk
and
D.
Thirumalai
,
J. Am. Chem. Soc.
133
,
11858
11861
(
2011
).
10.
H. M.
Watkins
,
A. J.
Simon
,
F.
Ricci
, and
K. W.
Plaxco
,
J. Am. Chem. Soc.
136
,
8923
8927
(
2014
).
11.
N. M.
Toan
,
G.
Morrison
,
C.
Hyeon
, and
D.
Thirumalai
,
J. Phys. Chem. B
112
,
6094
6106
(
2008
).
12.
R.
Afra
and
B. A.
Todd
,
J. Chem. Phys.
138
,
174908
(
2013
).
13.
P. J.
Mulligan
,
Y.-J.
Chen
,
R.
Phillips
, and
A. J.
Spakowitz
,
Biophys. J.
109
,
618
629
(
2015
).
14.
Y.-R.
Lee
,
S.
Kwon
, and
B. J.
Sung
,
J. Chem. Phys.
152
,
184905
(
2020
).
15.
C. H.
Starr
,
Z.
Bryant
, and
A. J.
Spakowitz
,
Biophys. J.
121
,
1949
1962
(
2022
).
16.
S. B.
Zimmerman
and
A. P.
Minton
,
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
65
(
1993
).
17.
M.
Weiss
,
Int. Rev. Cell Mol. Biol.
307
,
383
417
(
2014
).
18.
I.
Golding
and
E. C.
Cox
,
Phys. Rev. Lett.
96
,
098102
(
2006
).
19.
H.
Kang
,
P. A.
Pincus
,
C.
Hyeon
, and
D.
Thirumalai
,
Phys. Rev. Lett.
114
,
068303
(
2015
).
20.
A.
Chen
and
N.
Zhao
,
Phys. Chem. Chem. Phys.
21
,
12335
12345
(
2019
).
21.
J. J.
Burgos-Mármol
,
Ó.
Álvarez-Machancoses
, and
A.
Patti
,
J. Phys. Chem. B
121
,
6245
6256
(
2017
).
22.
P.
Kumar
,
L.
Theeyancheri
,
S.
Chaki
, and
R.
Chakrabarti
,
Soft Matter
15
,
8992
9002
(
2019
).
23.
F.
Yao
,
X.
Peng
,
Z.
Su
,
L.
Tian
,
Y.
Guo
, and
X.-f.
Kang
,
Anal. Chem.
92
,
3827
3833
(
2020
).
24.
F.
Hong
,
J. S.
Schreck
, and
P.
Šulc
,
Nucleic Acids Res.
48
,
10726
10738
(
2020
).
25.
J.
Shin
,
A. G.
Cherstvy
, and
R.
Metzler
,
Soft Matter
11
,
472
488
(
2015
).
26.
J.
Shin
,
A. G.
Cherstvy
, and
R.
Metzler
,
ACS Macro Lett.
4
,
202
206
(
2015
).
27.
S.
Kwon
and
B. J.
Sung
,
Phys. Rev. E
100
,
042501
(
2019
).
28.
Y.
Bian
,
X.
Cao
,
P.
Li
, and
N.
Zhao
,
Soft Matter
14
,
8060
8072
(
2018
).
29.
S.
Mühle
,
M.
Zhou
,
A.
Ghosh
, and
J.
Enderlein
,
Phys. Rev. E
100
,
052405
(
2019
).
30.
R.
Satija
,
A.
Das
,
S.
Mühle
,
J.
Enderlein
, and
D. E.
Makarov
,
J. Phys. Chem. B
124
,
3482
3493
(
2020
).
31.
J.
Rosen
,
Y. C.
Kim
, and
J.
Mittal
,
J. Phys. Chem. B
115
,
2683
2689
(
2011
).
32.
M.
Senske
,
L.
Törk
,
B.
Born
,
M.
Havenith
,
C.
Herrmann
, and
S.
Ebbinghaus
,
J. Am. Chem. Soc.
136
,
9036
9041
(
2014
).
33.
C. J.
Stewart
,
G. I.
Olgenblum
,
A.
Propst
,
D.
Harries
, and
G. J.
Pielak
,
Protein Sci.
32
,
e4573
(
2023
).
34.
D.
Nayar
,
J. Phys. Chem. B
127
,
6265
6276
(
2023
).
35.
J.
Heyda
,
A.
Muzdalo
, and
J.
Dzubiella
,
Macromolecules
46
,
1231
1238
(
2013
).
36.
H.
Garg
,
R.
Rajesh
, and
S.
Vemparala
,
J. Chem. Phys.
158
,
114903
(
2023
).
37.
S.
Guha
and
M. K.
Mitra
,
Soft Matter
19
,
153
163
(
2023
).
38.
A.
Kumar
and
D.
Chaudhuri
,
J. Phys.: Condens. Matter
31
,
354001
(
2019
).
39.
Y.
Huang
and
S.
Cheng
,
J. Polym. Sci.
59
,
2819
2831
(
2021
).
40.
K.
Tripathi
,
H.
Garg
,
R.
Rajesh
, and
S.
Vemparala
,
J. Chem. Phys.
159
,
204903
(
2023
).
41.
M.
Barbieri
,
M.
Chotalia
,
J.
Fraser
,
L.-M.
Lavitas
,
J.
Dostie
,
A.
Pombo
, and
M.
Nicodemi
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
16173
16178
(
2012
).
42.
C. A.
Brackley
,
B.
Liebchen
,
D.
Michieletto
,
F.
Mouvet
,
P. R.
Cook
, and
D.
Marenduzzo
,
Biophys. J.
112
,
1085
1093
(
2017
).
43.
M.
Conte
,
E.
Irani
,
A. M.
Chiariello
,
A.
Abraham
,
S.
Bianco
,
A.
Esposito
, and
M.
Nicodemi
,
Nat. Commun.
13
,
4070
(
2022
).
44.
T.
Sanchez
,
D.
Welch
,
D.
Nicastro
, and
Z.
Dogic
,
Science
333
,
456
459
(
2011
).
45.
M.
Loose
and
T. J.
Mitchison
,
Nat. Cell Biol.
16
,
38
46
(
2014
).
46.
Y.
Du
,
H.
Jiang
, and
Z.
Hou
,
Soft Matter
15
,
2020
2031
(
2019
).
47.
L.
Theeyancheri
,
S.
Chaki
,
N.
Samanta
,
R.
Goswami
,
R.
Chelakkot
, and
R.
Chakrabarti
,
Soft Matter
16
,
8482
8491
(
2020
).
48.
F.
Tan
,
Y.
Chen
, and
N.
Zhao
,
Soft Matter
17
,
1940
1954
(
2021
).
49.
A.
Kaiser
,
S.
Babel
,
B.
ten Hagen
,
C.
von Ferber
, and
H.
Löwen
,
J. Chem. Phys.
142
,
124905
(
2015
).
50.
S.
Das
,
N.
Kennedy
, and
A.
Cacciuto
,
Soft Matter
17
,
160
164
(
2021
).
51.
R. G.
Winkler
and
G.
Gompper
,
J. Chem. Phys.
153
,
040901
(
2020
).
52.
T.
Eisenstecken
and
R. G.
Winkler
,
J. Chem. Phys.
156
,
064105
(
2022
).
53.
S.
Paul
,
S.
Majumder
,
S. K.
Das
, and
W.
Janke
,
Soft Matter
18
,
1978
1990
(
2022
).
54.
J. M.
Moore
,
T. N.
Thompson
,
M. A.
Glaser
, and
M. D.
Betterton
,
Soft Matter
16
,
9436
9442
(
2020
).
55.
J. M.
Moore
,
M. A.
Glaser
, and
M. D.
Betterton
,
Soft Matter
17
,
4559
4565
(
2021
).
56.
Ö.
Duman
,
R. E.
Isele-Holder
,
J.
Elgeti
, and
G.
Gompper
,
Soft Matter
14
,
4483
4494
(
2018
).
57.
J.
Shin
,
A. G.
Cherstvy
,
W. K.
Kim
, and
R.
Metzler
,
New J. Phys.
17
,
113008
(
2015
).
58.
B.
Zhang
,
T.
Lei
, and
N.
Zhao
,
Phys. Chem. Chem. Phys.
23
,
12171
12190
(
2021
).
59.
A.
Ghosh
and
A. J.
Spakowitz
,
Soft Matter
18
,
6629
6637
(
2022
).
60.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford, UK
,
1986
).
You do not currently have access to this content.