VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V–V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V–V dimer length. The spin-restricted method tends to overestimate the strength of the V–V bonds, resulting in a small V–V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron–electron repulsion, involved in the metal–insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.

1.
D.
Khomskii
,
Transition Metal Compounds
(
Cambridge University Press
,
2014
).
2.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
3.
N.
Mott
,
Metal-Insulator Transitions
(
CRC Press
,
2004
).
4.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
5.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
6.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
,
N. K.
Nepal
, and
A. D.
Kaplan
, “
Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2017850118
(
2021
).
7.
Y.
Zhang
,
J.
Furness
,
R.
Zhang
,
Z.
Wang
,
A.
Zunger
, and
J.
Sun
, “
Symmetry-breaking polymorphous descriptions for correlated materials without interelectronic U
,”
Phys. Rev. B
102
,
045112
(
2020
).
8.
J. W.
Furness
,
Y.
Zhang
,
C.
Lane
,
I. G.
Buda
,
B.
Barbiellini
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors
,”
Commun. Phys.
1
,
11
(
2018
).
9.
Y.
Zhang
,
C.
Lane
,
J. W.
Furness
,
B.
Barbiellini
,
J. P.
Perdew
,
R. S.
Markiewicz
,
A.
Bansil
, and
J.
Sun
, “
Competing stripe and magnetic phases in the cuprates from first principles
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
68
(
2020
).
10.
P. W.
Anderson
, “
More is different
,”
Science
177
,
393
(
1972
).
11.
R. M.
Martin
,
L.
Reining
, and
D. M.
Ceperley
,
Interacting Electrons
(
Cambridge University Press
,
2016
).
12.
S. V.
Streltsov
and
D. I.
Khomskii
, “
Orbital physics in transition metal compounds: New trends
,”
Phys.-Usp.
60
,
1121
(
2017
).
13.
D. I.
Khomskii
and
S. V.
Streltsov
, “
Orbital effects in solids: Basics, recent progress, and opportunities
,”
Chem. Rev.
121
,
2992
(
2021
).
14.
D. I.
Khomskii
, “
Review—Orbital physics: Glorious past, bright future
,”
ECS J. Solid State Sci. Technol.
11
,
054004
(
2022
).
15.
H. F.
Pen
,
J.
van den Brink
,
D. I.
Khomskii
, and
G. A.
Sawatzky
, “
Orbital ordering in a two-dimensional triangular lattice
,”
Phys. Rev. Lett.
78
,
1323
(
1997
).
16.
V.
Eyert
, “
The metal-insulator transitions of VO2: A band theoretical approach
,”
Ann. Phys.
514
,
650
(
2002
).
17.
T.
Jin-no
,
Y.
Shimizu
,
M.
Itoh
,
S.
Niitaka
, and
H.
Takagi
, “
Orbital reformation with vanadium trimerization in d2 triangular lattice LiVO2 revealed by 51V NMR
,”
Phys. Rev. B
87
,
075135
(
2013
).
18.
E.
SÁNdor
and
W. A.
Wooster
, “
Extra streaks in the X-ray diffraction pattern of vanadium single crystals
,”
Nature
182
,
1435
(
1958
).
19.
S. V.
Streltsov
and
D. I.
Khomskii
, “
Covalent bonds against magnetism in transition metal compounds
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10491
(
2016
).
20.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
(
2001
).
21.
J. P.
Pouget
, “
Basic aspects of the metal–insulator transition in vanadium dioxide VO2: A critical review
,”
C. R. Phys.
22
,
37
(
2021
).
22.
J. B.
Goodenough
, “
The two components of the crystallographic transition in VO2
,”
J. Solid State Chem.
3
,
490
(
1971
).
23.
M.
Levy
, “
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v -representability problem
,”
Proc. Natl. Acad. Sci. U. S. A.
76
,
6062
(
1979
).
24.
A. D.
Kaplan
,
M.
Levy
, and
J. P.
Perdew
, “
The predictive power of exact constraints and appropriate norms in density functional theory
,”
Annu. Rev. Phys. Chem.
74
,
193
(
2023
).
25.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
26.
J. P.
Perdew
,
S. T. ur R.
Chowdhury
,
C.
Shahi
,
A. D.
Kaplan
,
D.
Song
, and
E. J.
Bylaska
, “
Symmetry breaking with the SCAN density functional describes strong correlation in the singlet carbon dimer
,”
J. Phys. Chem. A
127
,
384
(
2023
).
27.
C.
Li
,
X.
Zheng
,
N. Q.
Su
, and
W.
Yang
, “
Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations
,”
Natl. Sci. Rev.
5
,
203
(
2017
).
28.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
29.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
30.
M.
Cococcioni
and
S.
de Gironcoli
, “
Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
,”
Phys. Rev. B
71
,
035105
(
2005
).
31.
I. A.
Misurkin
and
A. A.
Ovchinnikov
, “
Antiferromagnetic spin structure of long molecules with conjugated bonds
,”
Mol. Phys.
27
,
237
(
1974
).
32.
D. C.
Langreth
and
J. P.
Perdew
, “
The exchange-correlation energy of a metallic surface
,”
Solid State Commun.
17
,
1425
(
1975
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
, “
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
,”
Phys. Rev. B
54
,
16533
(
1996
).
35.
J. P.
Perdew
,
M.
Ernzerhof
,
K.
Burke
, and
A.
Savin
, “
On-top pair-density interpretation of spin density functional theory, with applications to magnetism
,”
Int. J. Quantum Chem.
61
,
197
(
1997
).
36.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
(
2020
).
37.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
38.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
39.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
, “
Screened hybrid density functionals applied to solids
,”
J. Chem. Phys.
124
,
154709
(
2006
).
40.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
41.
A. I.
Liechtenstein
,
M. I.
Katsnelson
,
V. P.
Antropov
, and
V. A.
Gubanov
, “
Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys
,”
J. Magn. Magn. Mater.
67
,
65
(
1987
).
42.
Xu
He
,
N.
Helbig
,
M. J.
Verstraete
, and
E.
Bousquet
, “
TB2J: A Python package for computing magnetic interaction parameters
,”
Comput. Phys. Commun.
264
,
107938
(
2021
).
43.
R.
Dronskowski
and
P. E.
Bloechl
, “
Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations
,”
J. Phys. Chem.
97
,
8617
(
1993
).
44.
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets
,”
J. Phys. Chem. A
115
,
5461
(
2011
).
45.
S.
Maintz
,
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
, “
Lobster: A tool to extract chemical bonding from plane-wave based DFT
,”
J. Comput. Chem.
37
,
1030
(
2016
).
46.
R.
Peierls
,
More Surprises in Theoretical Physics
(
Princeton University Press
,
1991
).
47.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
(
2016
).
48.
Y.
Zhang
,
J.
Sun
,
J. P.
Perdew
, and
X.
Wu
, “
Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA
,”
Phys. Rev. B
96
,
035143
(
2017
).
49.
Y.
Zhang
,
D. A.
Kitchaev
,
J.
Yang
,
T.
Chen
,
S. T.
Dacek
,
R. A.
Sarmiento-Pérez
,
M. A. L.
Marques
,
H.
Peng
,
G.
Ceder
,
J. P.
Perdew
, and
J.
Sun
, “
Efficient first-principles prediction of solid stability: Towards chemical accuracy
,”
npj Comput. Mater.
4
,
9
(
2018
).
50.
Y.
Zhang
,
J. W.
Furness
,
B.
Xiao
, and
J.
Sun
, “
Subtlety of TiO2 phase stability: Reliability of the density functional theory predictions and persistence of the self-interaction error
,”
J. Chem. Phys.
150
,
014105
(
2019
).
51.
N.
Read
and
S.
Sachdev
, “
Spin-Peierls, valence-bond solid, and Neel ground states of low-dimensional quantum antiferromagnets
,”
Phys. Rev. B
42
,
4568
(
1990
).
52.
N.
Read
and
S.
Sachdev
, “
Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets
,”
Phys. Rev. Lett.
62
,
1694
(
1989
).
53.
A.
Liebsch
,
H.
Ishida
, and
G.
Bihlmayer
, “
Coulomb correlations and orbital polarization in the metal-insulator transition of VO2
,”
Phys. Rev. B
71
,
085109
(
2005
).
54.
S.
Sachdev
, “
The quantum phases of matter
,” arXiv:1203.4565 (
2012
).
55.
Ch
Rüegg
,
B.
Normand
,
M.
Matsumoto
,
A.
Furrer
,
D. F.
McMorrow
,
K. W.
Krämer
,
H. U.
Güdel
,
S. N.
Gvasaliya
,
H.
Mutka
, and
M.
Boehm
, “
Quantum magnets under pressure: Controlling elementary excitations in TlCuCl3
,”
Phys. Rev. Lett.
100
,
205701
(
2008
).
56.
G.
Bastien
,
G.
Garbarino
,
R.
Yadav
,
F. J.
Martinez-Casado
,
R.
Beltrán Rodríguez
,
Q.
Stahl
,
M.
Kusch
,
S. P.
Limandri
,
R.
Ray
,
P.
Lampen-Kelley
,
D. G.
Mandrus
,
S. E.
Nagler
,
M.
Roslova
,
A.
Isaeva
,
T.
Doert
,
L.
Hozoi
,
A. U. B.
Wolter
,
B.
Büchner
,
J.
Geck
, and
J.
van den Brink
, “
Pressure-induced dimerization and valence bond crystal formation in the Kitaev–Heisenberg magnet RuCl3
,”
Phys. Rev. B
97
,
241108
(
2018
).
57.
R. S.
Mulliken
, “
The assignment of quantum numbers for electrons in molecules. I
,”
Phys. Rev.
32
,
186
(
1928
).
58.
R. S.
Mulliken
, “
The assignment of quantum numbers for electrons in molecules. II. Correlation of molecular and atomic electron states
,”
Phys. Rev.
32
,
761
(
1928
).
59.
R. S.
Mulliken
, “
The assignment of quantum numbers for electrons in molecules. III. Diatomic hydrides
,”
Phys. Rev.
33
,
730
(
1929
).
60.
F.
Hund
, “
Zur deutung der molekelspektren. IV
,”
Z. Phys.
51
,
759
(
1928
).
61.
F.
Hund
, “
Zur frage der chemischen bindung
,”
Z. Phys.
73
,
1
(
1932
).
62.
J.
Stöhr
and
H.
Christoph Siegmann
,
Magnetism: From Fundamentals to Nanoscale Dynamics
(
Springer
,
Berlin, Heidelberg
,
2006
), Vol.
5
, p.
236
.
63.
G. N.
Lewis
, “
The atom and the molecule
,”
J. Am. Chem. Soc.
38
,
762
(
1916
).
64.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornell University Press
,
1939
).
65.
W.
Heitler
and
F.
London
, “
Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik
,”
Z. Phys.
44
,
455
(
1927
).
66.
J. M.
Galbraith
,
S.
Shaik
,
D.
Danovich
,
B.
Braïda
,
W.
Wu
,
P.
Hiberty
,
D. L.
Cooper
,
P. B.
Karadakov
, and
T. H.
Dunning
, Jr.
, “
Valence bond and molecular orbital: Two powerful theories that nicely complement one another
,”
J. Chem. Educ.
98
,
3617
(
2021
).
67.
S.
Shaik
,
D.
Danovich
, and
P. C.
Hiberty
, “
Valence bond theory—Its birth, struggles with molecular orbital theory, its present state and future prospects
,”
Molecules
26
,
1624
(
2021
).
68.
G.
Frenking
and
S.
Shaik
,
The Chemical Bond: Fundamental Aspects of Chemical Bonding
(
John Wiley & Sons
,
2014
), Vol.
1
.
69.
W. H.
Brito
,
M. C. O.
Aguiar
,
K.
Haule
, and
G.
Kotliar
, “
Dynamic electronic correlation effects in NbO2 as compared to VO2
,”
Phys. Rev. B
96
,
195102
(
2017
).
70.
S.
Biermann
,
A.
Poteryaev
,
A. I.
Lichtenstein
, and
A.
Georges
, “
Dynamical singlets and correlation-assisted Peierls transition in VO2
,”
Phys. Rev. Lett.
94
,
026404
(
2005
).
71.
B.
Lazarovits
,
K.
Kim
,
K.
Haule
, and
G.
Kotliar
, “
Effects of strain on the electronic structure of VO2
,”
Phys. Rev. B
81
,
115117
(
2010
).
72.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
You do not currently have access to this content.