DL_POLY Quantum 2.0, a vastly expanded software based on DL_POLY Classic 1.10, is a highly parallelized computational suite written in FORTRAN77 with a modular structure for incorporating nuclear quantum effects into large-scale/long-time molecular dynamics simulations. This is achieved by presenting users with a wide selection of state-of-the-art dynamics methods that utilize the isomorphism between a classical ring polymer and Feynman’s path integral formalism of quantum mechanics. The flexible and user-friendly input/output handling system allows the control of methodology, integration schemes, and thermostatting. DL_POLY Quantum is equipped with a module specifically assigned for calculating correlation functions and printing out the values for sought-after quantities, such as dipole moments and center-of-mass velocities, with packaged tools for calculating infrared absorption spectra and diffusion coefficients.

1.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
,
459
466
(
1959
).
2.
D.
Chandler
, “
From 50 years ago, the birth of modern liquid-state science
,”
Annu. Rev. Phys. Chem.
68
,
19
38
(
2017
).
3.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
2017
).
4.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
, 2nd ed. (
Oxford University Press
,
2023
).
5.
A.
Rimola
,
D.
Costa
,
M.
Sodupe
,
J.-F.
Lambert
, and
P.
Ugliengo
, “
Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments
,”
Chem. Rev.
113
,
4216
4313
(
2013
).
6.
P.
Li
and
K. M.
Merz
, Jr.
, “
Metal ion modeling using classical mechanics
,”
Chem. Rev.
117
,
1564
1686
(
2017
).
7.
B. B.
Hansen
,
S.
Spittle
,
B.
Chen
,
D.
Poe
,
Y.
Zhang
,
J. M.
Klein
,
A.
Horton
,
L.
Adhikari
,
T.
Zelovich
,
B. W.
Doherty
,
B.
Gurkan
,
E. J.
Maginn
,
A.
Ragauskas
,
M.
Dadmun
,
T. A.
Zawodzinski
,
G. A.
Baker
,
M. E.
Tuckerman
,
R. F.
Savinell
, and
J. R.
Sangoro
, “
Deep eutectic solvents: A review of fundamentals and applications
,”
Chem. Rev.
121
,
1232
1285
(
2021
).
8.
A.
Vidal-Limon
,
J. E.
Aguilar-Toala
, and
A. M.
Liceaga
, “
Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides
,”
J. Agric. Food Chem.
70
,
934
943
(
2022
).
9.
M.
Born
and
R.
Oppenheimer
, “
Zur quantentheorie der molekeln
,”
Ann. Phys.
389
,
457
484
(
1927
).
10.
T.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem
2
,
0109
(
2018
).
11.
L. D.
Fosdick
, “
Numerical estimation of the partition function in quantum statistics
,”
J. Math. Phys.
3
,
1251
1264
(
1962
).
12.
L. D.
Fosdick
and
H. F.
Jordan
, “
Path-integral calculation of the two-particle slater sum for He4
,”
Phys. Rev.
143
,
58
66
(
1966
).
13.
J. A.
Barker
, “
A quantum-statistical Monte Carlo method; path integrals with boundary conditions
,”
J. Chem. Phys.
70
,
2914
2918
(
1979
).
14.
D.
Chandler
and
P. G.
Wolynes
, “
Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids
,”
J. Chem. Phys.
74
,
4078
4095
(
1981
).
15.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
, Emended ed. (
Dover Publications
,
2005
).
16.
G. A.
Voth
, “
Path-integral centroid methods in quantum statistical mechanics and dynamics
,” in
Advances in Chemical Physics
(
John Wiley & Sons Ltd
,
1996
), pp.
135
218
.
17.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
, “
Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from Classical Trajectories in an extended phase space
,”
Annu. Rev. Phys. Chem.
64
,
387
413
(
2013
).
18.
B.
Hirshberg
,
V.
Rizzi
, and
M.
Parrinello
, “
Path integral molecular dynamics for bosons
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
21445
21449
(
2019
).
19.
M.
Parrinello
and
A.
Rahman
, “
Study of an F center in molten kcl
,”
J. Chem. Phys.
80
,
860
867
(
1984
).
20.
J.
Cao
and
G. A.
Voth
, “
The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics
,”
J. Chem. Phys.
101
,
6168
6183
(
1994
).
21.
S.
Jang
and
G. A.
Voth
, “
Path integral centroid variables and the formulation of their exact real time dynamics
,”
J. Chem. Phys.
111
,
2357
2370
(
1999
).
22.
S.
Jang
and
G. A.
Voth
, “
A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables
,”
J. Chem. Phys.
111
,
2371
2384
(
1999
).
23.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
,”
J. Chem. Phys.
121
,
3368
3373
(
2004
).
24.
I. R.
Craig
and
D. E.
Manolopoulos
, “
Chemical reaction rates from ring polymer molecular dynamics
,”
J. Chem. Phys.
122
,
084106
(
2005
).
25.
I. R.
Craig
and
D. E.
Manolopoulos
, “
A refined ring polymer molecular dynamics theory of chemical reaction rates
,”
J. Chem. Phys.
123
,
034102
(
2005
).
26.
P.
Shushkov
,
R.
Li
, and
J. C.
Tully
, “
Ring polymer molecular dynamics with surface hopping
,”
J. Chem. Phys.
137
,
22A549
(
2012
).
27.
J. O.
Richardson
and
M.
Thoss
, “
Communication: Nonadiabatic ring-polymer molecular dynamics
,”
J. Chem. Phys.
139
,
031102
(
2013
).
28.
N.
Ananth
, “
Mapping variable ring polymer molecular dynamics: A path-integral based method for nonadiabatic processes
,”
J. Chem. Phys.
139
,
124102
(
2013
).
29.
S. N.
Chowdhury
and
P.
Huo
, “
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
,”
J. Chem. Phys.
147
,
214109
(
2017
).
30.
F. A.
Shakib
and
P.
Huo
, “
Ring polymer surface hopping: Incorporating nuclear quantum effects into nonadiabatic molecular dynamics simulations
,”
J. Phys. Chem. Lett.
8
,
3073
3080
(
2017
).
31.
D. K.
Limbu
and
F. A.
Shakib
, “
Real-time dynamics and detailed balance in ring polymer surface hopping: The impact of frustrated hops
,”
J. Phys. Chem. Lett.
14
,
8658
8666
(
2023
).
32.
D. K.
Limbu
and
F. A.
Shakib
, “
SHARP pack: A modular software for incorporating nuclear quantum effects into non-adiabatic dynamics simulations
,”
Software Impacts
19
,
100604
(
2024
).
33.
S.
Habershon
,
G. S.
Fanourgakis
, and
D. E.
Manolopoulos
, “
Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water
,”
J. Chem. Phys.
129
,
074501
(
2008
).
34.
A.
Witt
,
S. D.
Ivanov
,
M.
Shiga
,
H.
Forbert
, and
D.
Marx
, “
On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy
,”
J. Chem. Phys.
130
,
194510
(
2009
).
35.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
I-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
36.
T. E.
Markland
and
D. E.
Manolopoulos
, “
An efficient ring polymer contraction scheme for imaginary time path integral simulations
,”
J. Chem. Phys.
129
,
024105
(
2008
).
37.
V.
Kapil
,
J.
VandeVondele
, and
M.
Ceriotti
, “
Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods
,”
J. Chem. Phys.
144
,
054111
(
2016
).
38.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
39.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
40.
M. R.
Momeni
and
F. A.
Shakib
, “
DL_POLY Quantum molecular simulation package
,” available from https://github.com/fashakib/DL_POLY–Quantum–v1.0.
41.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
, “
DL_POLY Classic molecular simulation package
,” STFC Daresbury Laboratory, available from https://gitlab.com/DL_POLY_Classic.
42.
R. P.
Feynman
,
A. R.
Hibbs
, and
D. F.
Styer
, “
Quantum mechanics and path integrals
,” Courier Corporation,
2010
.
43.
H. F.
Trotter
, “
On the product of semi-groups of operators
,”
Proc. Am. Math. Soc.
10
,
545
551
(
1959
).
44.
R.
Collepardo-Guevara
,
I. R.
Craig
, and
D. E.
Manolopoulos
, “
Proton transfer in a polar solvent from ring polymer reaction rate theory
,”
J. Chem. Phys.
128
,
144502
(
2008
).
45.
R. L.
Kenion
and
N.
Ananth
, “
Direct simulation of electron transfer in the cobalt hexammine(II/III) self-exchange reaction
,”
Phys. Chem. Chem. Phys.
18
,
26117
26124
(
2016
).
46.
J. S.
Kretchmer
and
T. F. I.
Miller
, “
Tipping the balance between concerted versus sequential proton-coupled electron transfer
,”
Inorg. Chem.
55
,
1022
1031
(
2016
).
47.
T. D.
Hone
,
P. J.
Rossky
, and
G. A.
Voth
, “
A comparative study of imaginary time path integral based methods for quantum dynamics
,”
J. Chem. Phys.
124
,
154103
(
2006
).
48.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Competing quantum effects in the dynamics of a flexible water model
,”
J. Chem. Phys.
131
,
024501
(
2009
).
49.
M.
Suzuki
, “
General theory of fractal path integrals with applications to many-body theories and statistical physics
,”
J. Math. Phys.
32
,
400
407
(
1991
).
50.
H.
Yoshida
, “
Construction of higher order symplectic integrators
,”
Phys. Lett. A
150
,
262
268
(
1990
).
51.
G. J.
Martyna
,
M. E.
Tuckerman
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
1157
(
1996
).
52.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
53.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
, “
Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals
,”
J. Chem. Phys.
99
,
2796
2808
(
1993
).
54.
B.
Leimkuhler
,
E.
Noorizadeh
, and
F.
Theil
, “
A gentle stochastic thermostat for molecular dynamics
,”
J. Stat. Phys.
135
,
261
277
(
2009
).
55.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
56.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Efficient stochastic thermostatting of path integral molecular dynamics
,”
J. Chem. Phys.
133
,
124104
(
2010
).
57.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
, “
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
,”
J. Chem. Phys.
134
,
084104
(
2011
).
58.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
, “
How to remove the spurious resonances from ring polymer molecular dynamics
,”
J. Chem. Phys.
140
,
234116
(
2014
).
59.
W.
Smith
, “
Molecular dynamics on hypercube parallel computers
,”
Comput. Phys. Commun.
62
,
229
248
(
1991
).
60.
W.
Smith
, “
Molecular dynamics on distributed memory (MIMD) parallel computers
,”
Theor. Chim. Acta
84
,
385
398
(
1993
).
61.
W.
Xia
,
A.
Mahmood
,
R.
Zou
, and
Q.
Xu
, “
Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
,”
Energy Environ. Sci.
8
,
1837
1866
(
2015
).
62.
A. E.
Baumann
,
D. A.
Burns
,
B.
Liu
, and
V. S.
Thoi
, “
Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices
,”
Commun. Chem.
2
,
86
(
2019
).
63.
T.
Qiu
,
Z.
Liang
,
W.
Guo
,
H.
Tabassum
,
S.
Gao
, and
R.
Zou
, “
Metal–organic framework-based materials for energy conversion and storage
,”
ACS Energy Lett.
5
,
520
532
(
2020
).
64.
D.
Farrusseng
,
S.
Aguado
, and
C.
Pinel
, “
Metal–organic frameworks: Opportunities for catalysis
,”
Angew. Chem., Int. Ed.
48
,
7502
7513
(
2009
).
65.
L.
Zhu
,
X.-Q.
Liu
,
H.-L.
Jiang
, and
L.-B.
Sun
, “
Metal–organic frameworks for heterogeneous basic catalysis
,”
Chem. Rev.
117
,
8129
8176
(
2017
).
66.
V.
Bernales
,
M. A.
Ortuño
,
D. G.
Truhlar
,
C. J.
Cramer
, and
L.
Gagliardi
, “
Computational design of functionalized metal–organic framework nodes for catalysis
,”
ACS Cent. Sci.
4
,
5
19
(
2018
).
67.
M. R.
Momeni
and
F. A.
Shakib
, “
Deterministic role of structural flexibility on catalytic activity of conductive 2D layered metal–organic frameworks
,”
Chem. Commun.
57
,
315
318
(
2021
).
68.
Z.
Meng
,
R. M.
Stolz
,
L.
Mendecki
, and
K. A.
Mirica
, “
Electrically-transduced chemical sensors based on two-dimensional nanomaterials
,”
Chem. Rev.
119
,
478
598
(
2019
).
69.
L. S.
Xie
,
G.
Skorupskii
, and
M.
Dincă
, “
Electrically conductive metal–organic frameworks
,”
Chem. Rev.
120
,
8536
8580
(
2020
).
70.
M. R.
Momeni
,
Z.
Zhang
,
D.
Dell’Angelo
, and
F. A.
Shakib
, “
Tuning electronic properties of conductive 2D layered metal–organic frameworks via host–guest interactions: Dioxygen as an electroactive chemical stimuli
,”
APL Mater.
9
,
051109
(
2021
).
71.
Z.
Zhang
,
D.
Dell’Angelo
,
M. R.
Momeni
,
Y.
Shi
, and
F. A.
Shakib
, “
Metal-to-semiconductor transition in two-dimensional metal–organic frameworks: An ab initio dynamics perspective
,”
ACS Appl. Mater. Interfaces
13
,
25270
25279
(
2021
).
72.
Z.
Zhang
,
D. S.
Valente
,
Y.
Shi
,
D. K.
Limbu
,
M. R.
Momeni
, and
F. A.
Shakib
, “
In silico high-throughput design and prediction of structural and electronic properties of low-dimensional metal–organic frameworks
,”
ACS Appl. Mater. Interfaces
15
,
9494
9507
(
2023
).
73.
H.
Kim
,
S.
Yang
,
S. R.
Rao
,
S.
Narayanan
,
E. A.
Kapustin
,
H.
Furukawa
,
A. S.
Umans
,
O. M.
Yaghi
, and
E. N.
Wang
, “
Water harvesting from air with metal-organic frameworks powered by natural sunlight
,”
Science
356
,
430
434
(
2017
).
74.
W.
Xu
and
O. M.
Yaghi
, “
Metal–organic frameworks for water harvesting from air, anywhere, anytime
,”
ACS Cent. Sci.
6
,
1348
1354
(
2020
).
75.
W.
Song
,
Z.
Zheng
,
A. H.
Alawadhi
, and
O. M.
Yaghi
, “
Mof water harvester produces water from death valley desert air in ambient sunlight
,”
Nat. Water
1
,
626
634
(
2023
).
76.
M. A.
Addicoat
,
N.
Vankova
,
I. F.
Akter
, and
T.
Heine
, “
Extension of the universal force field to metal–organic frameworks
,”
J. Chem. Theory Comput.
10
,
880
891
(
2014
).
77.
S.
Bureekaew
,
S.
Amirjalayer
,
M.
Tafipolsky
,
C.
Spickermann
,
T. K.
Roy
, and
R.
Schmid
, “
MOF-FF—A flexible first-principles derived force field for metal-organic frameworks
,”
Phys. Status Solidi B
250
,
1128
1141
(
2013
).
78.
J. K.
Bristow
,
D.
Tiana
, and
A.
Walsh
, “
Transferable force field for metal–organic frameworks from first-principles: BTW-FF
,”
J. Chem. Theory Comput.
10
,
4644
4652
(
2014
).
79.
A. J.
Rieth
,
K. M.
Hunter
,
M.
Dincă
, and
F.
Paesani
, “
Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites
,”
Nat. Commun.
10
,
4771
(
2019
).
80.
Y.
Shi
,
M. R.
Momeni
,
Y.-J.
Chen
,
D. K.
Limbu
,
Z.
Zhang
, and
F. A.
Shakib
, “
Water induced structural transformations in flexible two-dimensional layered conductive metal–organic frameworks
,”
Chem. Mater.
34
,
7730
7740
(
2022
).
81.
Y.
Wu
,
A.
Kobayashi
,
G. J.
Halder
,
V. K.
Peterson
,
K. W.
Chapman
,
N.
Lock
,
P. D.
Southon
, and
C. J.
Kepert
, “
Negative thermal expansion in the metal–organic framework material Cu3(1,3,5-benzenetricarboxylate)2
,”
Angew. Chem., Int. Ed.
47
,
8929
8932
(
2008
).
82.
M.
Ceriotti
and
D. E.
Manolopoulos
, “
Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei
,”
Phys. Rev. Lett.
109
,
100604
(
2012
).
83.
J. E.
Bertie
and
Z.
Lan
, “
Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25°C between 15,000 and 1 cm−1
,”
Appl. Spectrosc.
50
,
1047
1057
(
1996
).
84.
A. E. I.
DePrince
and
J. R.
Hammond
, “
Coupled cluster theory on graphics processing units I. The coupled cluster doubles method
,”
J. Chem. Theory Comput.
7
,
1287
1295
(
2011
).
85.
I. S.
Ufimtsev
and
T. J.
Martínez
, “
Graphical processing units for quantum chemistry
,”
Comput. Sci. Eng.
10
,
26
34
(
2008
).
86.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
87.
T. J.
Boerner
,
S.
Deems
,
T. R.
Furlani
,
S. L.
Knuth
, and
J.
Towns
, “
Access: Advancing innovation: NSF’s advanced cyberinfrastructure coordination ecosystem: Services & support
,” in
Practice and Experience in Advanced Research Computing, PEARC’23
(
Association for Computing Machinery
,
New York
,
2023
), pp.
173
176
.
88.
A.
Pérez
,
M. E.
Tuckerman
, and
M. H.
Müser
, “
A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals
,”
J. Chem. Phys.
130
,
184105
(
2009
).
89.
L.
Verlet
, “
‘Computer experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
103
(
1967
).
90.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
, “
Colored-noise thermostats à la carte
,”
J. Chem. Theory Comput.
6
,
1170
1180
(
2010
).
91.
F.
Uhl
,
D.
Marx
, and
M.
Ceriotti
, “
Accelerated path integral methods for atomistic simulations at ultra-low temperatures
,”
J. Chem. Phys.
145
,
054101
(
2016
).
93.
N. L.
Allinger
,
Y. H.
Yuh
, and
J. H.
Lii
, “
Molecular mechanics. The MM3 force field for hydrocarbons. 1
,”
J. Am. Chem. Soc.
111
,
8551
8566
(
1989
).
94.
T.-C.
Lim
, “
Alignment of buckingham parameters to generalized Lennard-Jones potential functions
,”
Z. Naturforsch. A
64
,
200
204
(
2009
).
You do not currently have access to this content.