Semiconducting MXenes are an intriguing two-dimensional (2D) material class with promising electronic and optoelectronic properties. Here, we focused on recently prepared Hf-based MXenes, namely, Hf3C2O2 and Hf2CO2. Using the first-principles calculation and excited state corrections, we proved their dynamical stability, reconciled their semiconducting behavior, and obtained fundamental gaps by using the many-body GW method (indirect 1.1 and 2.2 eV; direct 1.4 and 3.5 eV). Using the Bethe–Salpeter equation, we subsequently provided optical gaps (0.9 and 2.7 eV, respectively), exciton binding energies, absorption spectra, and other properties of excitons in both Hf-based MXenes. The indirect character of both 2D materials further allowed for a significant decrease of excitation energies by considering indirect excitons with exciton momentum along the Γ-M path in the Brillouin zone. The first bright excitons are strongly delocalized in real space while contributed by only a limited number of electron–hole pairs around the M point in the k-space from the valence and conduction band. A diverse range of excitonic states in Hf3C2O2 MXene lead to a 4% and 13% absorptance for the first and second peaks in the infrared region of absorption spectra, respectively. In contrast, a prominent 28% absorptance peak in the visible region appears in Hf2CO2 MXene. Results from radiative lifetime calculations indicate the promising potential of these materials in optoelectric devices requiring sustained and efficient exciton behavior.

1.
M.
Naguib
,
V. N.
Mochalin
,
M. W.
Barsoum
, and
Y.
Gogotsi
, “
25th anniversary article: Mxenes: A new family of two-dimensional materials
,”
Adv. Mater.
26
,
992
1005
(
2014
).
2.
B.
Anasori
,
M. R.
Lukatskaya
, and
Y.
Gogotsi
, “
2D metal carbides and nitrides (MXenes) for energy storage
,”
Nat. Rev. Mater.
2
,
16098
(
2017
).
3.
Y.
Gogotsi
and
B.
Anasori
, “
The rise of mxenes
,”
ACS Nano
13
,
8491
8494
(
2019
).
4.
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J.
Niu
,
M.
Heon
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
, “
Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
,”
Adv. Mater.
23
,
4248
4253
(
2011
).
5.
K. R. G.
Lim
,
M.
Shekhirev
,
B. C.
Wyatt
,
B.
Anasori
,
Y.
Gogotsi
, and
Z. W.
Seh
, “
Fundamentals of mxene synthesis
,”
Nat. Synth.
1
,
601
614
(
2022
).
6.
B.
Anasori
and
Y.
Gogotsi
, “
MXenes: Trends, growth, and future directions
,”
Graphene 2D Mater.
7
,
75
79
(
2022
).
7.
J. L.
Hart
,
K.
Hantanasirisakul
,
A. C.
Lang
,
B.
Anasori
,
D.
Pinto
,
Y.
Pivak
,
J. T.
van Omme
,
S. J.
May
,
Y.
Gogotsi
, and
M. L.
Taheri
, “
Control of MXenes’ electronic properties through termination and intercalation
,”
Nat. Commun.
10
,
522
(
2019
).
8.
T.
Ketolainen
and
F.
Karlický
, “
Optical gaps and excitons in semiconducting transition metal carbides (MXenes)
,”
J. Mater. Chem. C
10
,
3919
3928
(
2022
).
9.
T.
Sakhraoui
and
F.
Karlický
, “
Electronic nature transition and magnetism creation in vacancy-defected Ti2CO2 MXene under biaxial strain: A DFTB + U study
,”
ACS Omega
7
,
42221
42232
(
2022
).
10.
N.
Kumar
and
F.
Karlický
, “
Oxygen-terminated Ti3C2 MXene as an excitonic insulator
,”
Appl. Phys. Lett.
122
,
183102
(
2023
).
11.
H.
Kim
and
H. N.
Alshareef
, “
MXetronics: MXene-enabled electronic and photonic devices
,”
ACS Mater. Lett.
2
,
55
70
(
2020
).
12.
A.
Champagne
and
J. C.
Charlier
, “
Physical properties of 2D MXenes: From a theoretical perspective
,”
J. Phys. Mater.
3
,
032006
(
2020
).
13.
T.
Lapauw
,
B.
Tunca
,
T.
Cabioc’h
,
J.
Lu
,
P. O. A.
Persson
,
K.
Lambrinou
, and
J.
Vleugels
, “
Synthesis of MAX phases in the Hf–Al–C system
,”
Inorg. Chem.
55
,
10922
10927
(
2016
).
14.
Y.-C.
Zhou
,
L.-F.
He
,
Z.-J.
Lin
, and
J.-Y.
Wang
, “
Synthesis and structure–property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems
,”
J. Eur. Ceram. Soc.
33
,
2831
2865
(
2013
).
15.
J.
Zhou
,
X.
Zha
,
X.
Zhou
,
F.
Chen
,
G.
Gao
,
S.
Wang
,
C.
Shen
,
T.
Chen
,
C.
Zhi
,
P.
Eklund
,
S.
Du
,
J.
Xue
,
W.
Shi
,
Z.
Chai
, and
Q.
Huang
, “
Synthesis and electrochemical properties of two-dimensional hafnium carbide
,”
ACS Nano
11
,
3841
3850
(
2017
).
16.
X.-H.
Zha
,
J.
Zhou
,
K.
Luo
,
J.
Lang
,
Q.
Huang
,
X.
Zhou
,
J. S.
Francisco
,
J.
He
, and
S.
Du
, “
Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2MXene
,”
J. Phys.: Condens. Matter
29
,
165701
(
2017
).
17.
X.-H.
Zha
,
Q.
Huang
,
J.
He
,
H.
He
,
J.
Zhai
,
J. S.
Francisco
, and
S.
Du
, “
The thermal and electrical properties of the promising semiconductor mxene Hf2Co2
,”
Sci. Rep.
6
,
27971
(
2016
).
18.
M.
Khazaei
,
M.
Arai
,
T.
Sasaki
,
C.-Y.
Chung
,
N. S.
Venkataramanan
,
M.
Estili
,
Y.
Sakka
, and
Y.
Kawazoe
, “
Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides
,”
Adv. Funct. Mater.
23
,
2185
2192
(
2013
).
19.
Y.
Zhang
,
W.
Xia
,
Y.
Wu
, and
P.
Zhang
, “
Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations
,”
Nanoscale
11
,
3993
4000
(
2019
).
20.
N.
Kumar
,
R.
Chaurasiya
, and
A.
Dixit
, “
Strain tailored thermodynamic stability, electronic transitions, and optoelectronic properties of III (In, Ga and Al)-nitride monolayers
,”
Nanotechnology
33
,
045202
(
2021
).
21.
N.
Kumar
,
R.
Chaurasiya
,
F.
Karlicky
, and
A.
Dixit
, “
Bandgap engineering and modulation of thermodynamic, and optical properties of III-N monolayers XN (X = In, Ga & Al) by mutual alloying
,”
Phys. Scr.
97
,
095806
(
2022
).
22.
M.
Bernardi
,
M.
Palummo
, and
J. C.
Grossman
, “
Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials
,”
Nano Lett.
13
,
3664
3670
(
2013
).
23.
D. Y.
Qiu
,
F. H.
Da Jornada
, and
S. G.
Louie
, “
Optical spectrum of MoS2: Many-body effects and diversity of exciton states
,”
Phys. Rev. Lett.
111
,
216805
(
2013
).
24.
L.
Hedin
, “
New method for calculating the one-particle green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
(
1965
).
25.
E. E.
Salpeter
and
H. A.
Bethe
, “
A relativistic equation for bound-state problems
,”
Phys. Rev.
84
,
1232
(
1951
).
26.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Courier Corporation
,
2012
).
27.
M.
Dubecký
,
S.
Minárik
, and
F.
Karlický
, “
Benchmarking fundamental gap of Sc2C(OH)2 MXene by many-body methods
,”
J. Chem. Phys.
158
,
054703
(
2023
).
28.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
et al, “
Advanced capabilities for materials modelling with quantum espresso
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
29.
D.
Hamann
, “
Optimized norm-conserving vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
, “
Yambo: An ab initio tool for excited state calculations
,”
Comput. Phys. Commun.
180
,
1392
1403
(
2009
).
32.
D.
Sangalli
,
A.
Ferretti
,
H.
Miranda
,
C.
Attaccalite
,
I.
Marri
,
E.
Cannuccia
,
P.
Melo
,
M.
Marsili
,
F.
Paleari
,
A.
Marrazzo
et al, “
Many-body perturbation theory calculations using the yambo code
,”
J. Phys.: Condens. Matter
31
,
325902
(
2019
).
33.
O.
Pulci
,
G.
Onida
,
R.
Del Sole
, and
L.
Reining
, “
Ab Initio calculation of self-energy effects on optical properties of GaAs(110)
,”
Phys. Rev. Lett.
81
,
5374
(
1998
).
34.
C. A.
Rozzi
,
D.
Varsano
,
A.
Marini
,
E. K.
Gross
, and
A.
Rubio
, “
Exact Coulomb cutoff technique for supercell calculations
,”
Phys. Rev. B
73
,
205119
(
2006
).
35.
A.
Castro
,
E.
Räsänen
, and
C. A.
Rozzi
, “
Exact Coulomb cutoff technique for supercell calculations in two dimensions
,”
Phys. Rev. B
80
,
033102
(
2009
).
36.
S.
Albrecht
,
L.
Reining
,
R.
Del Sole
, and
G.
Onida
, “
Ab Initio calculation of excitonic effects in the optical spectra of semiconductors
,”
Phys. Rev. Lett.
80
,
4510
(
1998
).
37.
T.
Ketolainen
,
N.
Macháčová
, and
F.
Karlický
, “
Optical gaps and excitonic properties of 2D materials by hybrid time-dependent density functional theory: Evidences for monolayers and prospects for van der Waals heterostructures
,”
J. Chem. Theory Comput.
16
,
5876
5883
(
2020
).
38.
F. A.
Rasmussen
,
P. S.
Schmidt
,
K. T.
Winther
, and
K. S.
Thygesen
, “
Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene
,”
Phys. Rev. B
94
,
155406
(
2016
).
39.
A.
Guandalini
,
P.
D’Amico
,
A.
Ferretti
, and
D.
Varsano
, “
Efficient GW calculations in two dimensional materials through a stochastic integration of the screened potential
,”
npj Comput. Mater.
9
,
44
(
2023
).
40.
A.
Molina-Sánchez
,
G.
Catarina
,
D.
Sangalli
, and
J.
Fernandez-Rossier
, “
Magneto-optical response of chromium trihalide monolayers: Chemical trends
,”
J. Mater. Chem. C
8
,
8856
8863
(
2020
).
41.
H.-Y.
Chen
,
M.
Palummo
,
D.
Sangalli
, and
M.
Bernardi
, “
Theory and ab initio computation of the anisotropic light emission in monolayer transition metal dichalcogenides
,”
Nano Lett.
18
,
3839
3843
(
2018
).
42.
‘Strengths’ output printed out by a post-processing tool (YPP) included in the Yambo code (version 5.1.0) in eV must be converted to μλ2 (in SI units): μλ2 = ε0Ve2strengths, where ɛ0 is the vacuum permittivity, V is the volume of the computational cell, and e is the elementary charge.
43.
M.
Palummo
,
M.
Bernardi
, and
J. C.
Grossman
, “
Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides
,”
Nano Lett.
15
,
2794
2800
(
2015
).
44.
H.-Y.
Chen
,
V. A.
Jhalani
,
M.
Palummo
, and
M.
Bernardi
, “
Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules
,”
Phys. Rev. B
100
,
075135
(
2019
).
45.
M.
Kolos
and
F.
Karlický
, “
The electronic and optical properties of III–V binary 2D semiconductors: How to achieve high precision from accurate many-body methods
,”
Phys. Chem. Chem. Phys.
24
,
27459
27466
(
2022
).
46.
M.
Kolos
,
L.
Cigarini
,
R.
Verma
,
F.
Karlicky
, and
S.
Bhattacharya
, “
Giant linear and nonlinear excitonic responses in an atomically thin indirect semiconductor nitrogen phosphide
,”
J. Phys. Chem. C.
125
,
12738
12757
(
2021
).
47.
M.
Kolos
,
R.
Verma
,
F.
Karlický
, and
S.
Bhattacharya
, “
Large exciton-driven linear and nonlinear optical processes in monolayers of nitrogen arsenide and nitrogen antimonide
,”
J. Phys. Chem. C.
126
,
14931
14959
(
2022
).
48.
A.
Chernikov
,
T. C.
Berkelbach
,
H. M.
Hill
,
A.
Rigosi
,
Y.
Li
,
B.
Aslan
,
D. R.
Reichman
,
M. S.
Hybertsen
, and
T. F.
Heinz
, “
Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2
,”
Phys. Rev. Lett.
113
,
076802
(
2014
).
49.
P.
Cudazzo
,
L.
Sponza
,
C.
Giorgetti
,
L.
Reining
,
F.
Sottile
, and
M.
Gatti
, “
Exciton band structure in two-dimensional materials
,”
Phys. Rev. Lett.
116
,
066803
(
2016
).
50.
M. S.
Prete
,
D.
Grassano
,
O.
Pulci
,
I.
Kupchak
,
V.
Olevano
, and
F.
Bechstedt
, “
Giant excitonic absorption and emission in two-dimensional group-III nitrides
,”
Sci. Rep.
10
,
10719
(
2020
).
51.
C. D.
Spataru
,
S.
Ismail-Beigi
,
R. B.
Capaz
, and
S. G.
Louie
, “
Theory and Ab Initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes
,”
Phys. Rev. Lett.
95
,
247402
(
2005
).

Supplementary Material

You do not currently have access to this content.