Methoxymethanol (CH3OCH2OH) is a reactive C2 ether-alcohol that is formed by coupling events in both heterogeneous and homogeneous systems. It is found in complex reactive environments—for example those associated with catalytic reactors, combustion systems, and liquid-phase mixtures of oxygenates. Using tunable synchrotron-generated vacuum-ultraviolet photons between 10.0 and 11.5 eV, we report on the photoionization spectroscopy of methoxymethanol. We determine that the lowest-energy photoionization process is the dissociative ionization of methoxymethanol via H-atom loss to produce [C2H5O2]+, a fragment cation with a mass-to-charge ratio (m/z) = 61.029. We measure the appearance energy of this fragment ion to be 10.24 ± 0.05 eV. The parent cation is not detected in the energy range examined. To elucidate the origin of the m/z = 61.029 (C2H5O2) fragment, we used automated electronic structure calculations to identify key stationary points on the cation potential energy surface and compute conformer-specific microcanonical rate coefficients for the important unimolecular processes. The calculated H-atom dissociation pathway results in a [C2H5O2]+ fragment appearance at 10.21 eV, in excellent agreement with experimental results.

1.
J.
Sambeth
,
L.
Gambaro
, and
H.
Thomas
, “
Study of the adsorption/oxidation of methanol over vanadium pentoxide
,”
Adsorpt. Sci. Technol.
12
(
3
),
171
180
(
1995
).
2.
J.-M.
Tatibouët
and
H.
Lauron-Pernot
, “
Transient isotopic study of methanol oxidation on unsupported V2O5 mechanism of methylal formation
,”
J. Mol. Catal. A: Chem.
171
,
205
216
(
2001
).
3.
J. E.
Sambeth
,
M. A.
Centeno
,
A.
Paúl
,
L. E.
Briand
,
H. J.
Thomas
, and
J. A.
Odriozola
, “
In situ DRIFTS study of the adsorption-oxidation of CH3OH on V2O5
,”
J. Mol. Catal. A: Chem.
161
,
89
97
(
2000
).
4.
K. K.
Barakoti
,
P.
Subedi
,
F.
Chalyavi
,
S.
Gutierrez-Portocarrero
,
M. J.
Tucker
, and
M. A.
Alpuche-Aviles
, “
Formaldehyde analysis in non-aqueous methanol solutions by infrared spectroscopy and electrospray ionization
,”
Front. Chem.
9
,
678112
(
2021
).
5.
D. C.
Silverman
and
J. J.
Freeman
, “
Associated species in vaporized methanol-formaldehyde solutions
,”
Ind. Eng. Chem. Process Des. Dev.
22
,
441
445
(
1983
).
6.
M.
Detcheberry
,
P.
Destrac
,
X. M.
Meyer
, and
J. S.
Condoret
, “
Phase equilibria of aqueous solutions of formaldehyde and methanol: Improved approach using UNIQUAC coupled to chemical equilibria
,”
Fluid Phase Equilib.
392
,
84
94
(
2015
).
7.
C.
Kuhnert
,
M.
Albert
,
S.
Breyer
,
I.
Hahnenstein
,
H.
Hasse
, and
G.
Maurer
, “
Phase equilibrium in formaldehyde containing multicomponent mixtures: Experimental results for fluid phase equilibria of (formaldehyde + (water or methanol) + methylal) and (formaldehyde + water + methanol + methylal) and comparison with predictions
,”
Ind. Eng. Chem. Res.
45
(
14
),
5155
5164
(
2006
).
8.
S.
Dwivedi
,
S. H.
Mushrif
,
A. L.
Chaffee
, and
A.
Tanksale
, “
Solvation behaviour and micro-phase structure of formaldehyde-methanol-water mixtures
,”
J. Mol. Liq.
301
,
112444
(
2020
).
9.
G.
Maurer
, “
Vapor-liquid equilibrium of formaldehyde-and water-containing multicomponent mixtures
,”
AIChE J.
32
(
6
),
932
948
(
1986
).
10.
A. A.
Konnov
,
E. J. K.
Nilsson
,
M.
Christensen
, and
C.-W.
Zhou
, “
Combustion chemistry of methoxymethanol. Part II: Laminar flames of methanol + formaldehyde fuel mixtures
,”
Combust. Flame
229
,
111411
(
2021
).
11.
S. M.
Gurses
,
T.
Price
,
A.
Zhang
,
J. H.
Frank
,
N.
Hansen
,
D. L.
Osborn
,
A.
Kulkarni
, and
C. X.
Kronawitter
, “
Near-surface gas-phase methoxymethanol is generated by methanol oxidation over Pd-based catalysts
,”
J. Phys. Chem. Lett.
12
(
46
),
11252
11258
(
2021
).
12.
B.
Zhou
,
E.
Huang
,
R.
Almeida
,
S.
Gurses
,
A.
Ungar
,
J.
Zetterberg
,
A.
Kulkarni
,
C. X.
Kronawitter
,
D. L.
Osborn
,
N.
Hansen
, and
J. H.
Frank
, “
Near-surface imaging of the multicomponent gas phase above a silver catalyst during partial oxidation of methanol
,”
ACS Catal.
11
(
1
),
155
168
(
2021
).
13.
S. M.
Gurses
,
N.
Felvey
,
L. R.
Filardi
,
A. J.
Zhang
,
J.
Wood
,
K.
van Benthem
,
J. H.
Frank
,
D. L.
Osborn
,
N.
Hansen
, and
C. X.
Kronawitter
, “
Constraining reaction pathways for methanol oxidation through operando interrogation of both the surface and the near-surface gas phase
,”
Chem Catal.
3
(
10
),
100782
(
2023
).
14.
H.
Liu
and
E.
Iglesia
, “
Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12−nPO40 keggin structures
,”
J. Phys. Chem. B
107
(
39
),
10840
10847
(
2003
).
15.
J.
Lichtenberger
,
D.
Lee
, and
E.
Iglesia
, “
Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures
,”
Phys. Chem. Chem. Phys.
9
(
35
),
4902
(
2007
).
16.
K.
Takahashi
,
N.
Takezawa
, and
H.
Kobayashi
, “
Mechanism of formation of methyl formate from formaldehyde over copper catalysts
,”
Chem. Lett.
12
(
7
),
1061
1064
(
1983
).
17.
H.
Liu
and
E.
Iglesia
, “
Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures
,”
J. Phys. Chem. B
109
(
6
),
2155
2163
(
2005
).
18.
Y.
Zhu
,
C.-W.
Zhou
, and
A. A.
Konnov
, “
Combustion chemistry of methoxymethanol. Part I: Chemical kinetics of hydrogen-abstraction reactions and the unimolecular reactions of the product [C2H5O2] radicals
,”
Combust. Flame
229
,
111396
(
2021
).
19.
B. A.
McGuire
,
C. N.
Shingledecker
,
E. R.
Willis
,
A. M.
Burkhardt
,
S.
El-Abd
,
R. A.
Motiyenko
,
C. L.
Brogan
,
T. R.
Hunter
,
L.
Margulès
,
J.-C.
Guillemin
,
R. T.
Garrod
,
E.
Herbst
, and
A. J.
Remijan
, “
ALMA detection of interstellar methoxymethanol (CH3OCH2OH)
,”
Astrophys. J. Lett.
851
(
2
),
L46
(
2017
).
20.
R. A.
Johnson
and
A. E.
Stanley
, “
GC/MS and FT-IR spectra of methoxymethanol
,”
Appl. Spectrosc.
45
(
2
),
218
222
(
1991
).
21.
S.
Maity
,
R. I.
Kaiser
, and
B. M.
Jones
, “
Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation—A combined FTIR and reflectron time-of-flight mass spectrometry study
,”
Phys. Chem. Chem. Phys.
17
(
5
),
3081
3114
(
2015
).
22.
C.
Zhu
,
R.
Frigge
,
A.
Bergantini
,
R. C.
Fortenberry
, and
R. I.
Kaiser
, “
Untangling the formation of methoxymethanol (CH3OCH2OH) and dimethyl peroxide (CH3OOCH3) in star-forming regions
,”
Astrophys. J.
881
(
2
),
156
165
(
2019
).
23.
A. M.
Turner
,
A.
Bergantini
,
A. S.
Koutsogiannis
,
N. F.
Kleimeier
,
S. K.
Singh
,
C.
Zhu
,
A. K.
Eckhardt
, and
R. I.
Kaiser
, “
A photoionization mass spectrometry investigation into complex organic molecules formed in interstellar analog ices of carbon monoxide and water exposed to ionizing radiation
,”
Astrophys. J.
916
(
2
),
74
85
(
2021
).
24.
R. A.
Motiyenko
,
L.
Margulès
,
D.
Despois
, and
J.-C.
Guillemin
, “
Laboratory spectroscopy of methoxymethanol in the millimeter-wave range
,”
Phys. Chem. Chem. Phys.
20
(
8
),
5509
5516
(
2018
).
25.
T. D.
Harris
,
D. H.
Lee
,
M. Q.
Blumberg
, and
C. R.
Arumainayagam
, “
Electron-induced reactions in methanol ultrathin films studied by temperature-programmed desorption: A useful method to study radiation chemistry
,”
J. Phys. Chem.
99
,
9530
9535
(
1995
).
26.
N.
Hansen
,
T. A.
Cool
,
P. R.
Westmoreland
, and
K.
Kohse-Höinghaus
, “
Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry
,”
Prog. Energy Combust. Sci.
35
(
2
),
168
191
(
2009
).
27.
T. A.
Cool
,
K.
Nakajima
,
T. A.
Mostefaoui
,
F.
Qi
,
A.
McIlroy
,
P. R.
Westmoreland
,
M. E.
Law
,
L.
Poisson
,
D. S.
Peterka
, and
M.
Ahmed
, “
Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry
,”
J. Chem. Phys.
119
(
16
),
8356
8365
(
2003
).
28.
K.
Moshammer
,
A. W.
Jasper
,
D. M.
Popolan-Vaida
,
A.
Lucassen
,
P.
Diévart
,
H.
Selim
,
A. J.
Eskola
,
C. A.
Taatjes
,
S. R.
Leone
,
S. M.
Sarathy
,
Y.
Ju
,
P.
Dagaut
,
K.
Kohse-Höinghaus
, and
N.
Hansen
, “
Detection and identification of the keto-hydroperoxide (HOOCH2OCHO) and other intermediates during low-temperature oxidation of dimethyl ether
,”
J. Phys. Chem. A
119
(
28
),
7361
7374
(
2015
).
29.
T. A.
Cool
,
J.
Wang
,
K.
Nakajima
,
C. A.
Taatjes
, and
A.
Mcllroy
, “
Photoionization cross sections for reaction intermediates in hydrocarbon combustion
,”
Int. J. Mass Spectrom.
247
(
1–3
),
18
27
(
2005
).
30.
B.
Yang
,
J.
Wang
,
T. A.
Cool
,
N.
Hansen
,
S.
Skeen
, and
D. L.
Osborn
, “
Absolute photoionization cross-sections of some combustion intermediates
,”
Int. J. Mass Spectrom.
309
,
118
128
(
2012
).
31.
J.
Wang
,
B.
Yang
,
T. A.
Cool
, and
N.
Hansen
, “
Absolute cross-sections for dissociative photoionization of some small esters
,”
Int. J. Mass Spectrom.
292
(
1–3
),
14
22
(
2010
).
32.
H. P.
Aytam
,
V.
Akula
,
K.
Janmanchi
,
S. R. R.
Kamaraju
,
K. R.
Panja
,
K.
Gurram
, and
J. W.
Niemantsverdriet
, “
Characterization and reactivity of Pd/MgO and Pd/γ-Al2O3 catalysts in the selective hydrogenolysis of CCl2F2
,”
J. Phys. Chem. B
106
(
5
),
1024
1031
(
2002
).
33.
R.
Van de Vijver
and
J.
Zádor
, “
KinBot: Automated stationary point search on potential energy surfaces
,”
Comput. Phys. Commun.
248
,
106947
(
2020
).
34.
J.
Zádor
,
C.
Martí
,
R.
Van de Vijver
,
S. L.
Johansen
,
Y.
Yang
,
H. A.
Michelsen
, and
H. N.
Najm
, “
Automated reaction kinetics of gas-phase organic species over multiwell potential energy surfaces
,”
J. Phys. Chem. A
127
(
3
),
565
588
(
2023
).
35.
J. A.
Montgomery
Jr.,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
, “
A complete basis set model chemistry. VII. Use of the minimum population localization method
,”
J. Chem. Phys.
112
,
6532
6542
(
2000
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Rev. B. 01,
Wallingford, CT
,
2016
.
37.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
M.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
H.
Meyer
,
T. F.
Miller III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O'Neill
,
P.
Palmieri
,
D.
Peng
,
T.
Petrenko
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, MOLPRO, version 2022, a package of ab initio programs (
2022
). http://www.molpro.net
38.
Y.
Georgievskii
, and
S. J.
Klippenstein
, “
Master Equation System Solver (MESS)
,” https://github.com/Auto-Mech/MESS/ (
2016
).
39.
K. K.
Sullivan
,
M. D.
Boamah
,
K. E.
Shulenberger
,
S.
Chapman
,
K. E.
Atkinson
,
M. C.
Boyer
, and
C. R.
Arumainayagam
, “
Low-energy (<20 eV) and high-energy (1000 eV) electron-induced methanol radiolysis of astrochemical interest
,”
Mon. Not. R. Astron. Soc.
460
(
1
),
664
672
(
2016
).
40.
G.
Meloni
,
P.
Zou
,
S. J.
Klippenstein
,
M.
Ahmed
,
S. R.
Leone
,
C. A.
Taatjes
, and
D. L.
Osborn
, “
Energy-resolved photoionization of alkylperoxy radicals and the stability of their cations
,”
J. Am. Chem. Soc.
128
(
41
),
13559
13567
(
2006
).
41.
T.
Yu
,
X.
Wu
,
X.
Zhou
,
A.
Bodi
, and
P.
Hemberger
, “
Hydrogen migration as a potential driving force in the thermal decomposition of dimethoxymethane: New insights from pyrolysis imaging photoelectron photoion coincidence spectroscopy and computations
,”
Combust. Flame
222
,
123
132
(
2020
).
42.
B. M.
Hays
and
S. L.
Widicus Weaver
, “
Theoretical examination of O(1D) insertion reactions to form methanediol, methoxymethanol, and aminomethanol
,”
J. Phys. Chem. A
117
(
32
),
7142
7148
(
2013
).
43.
M.
Kamphus
,
N.-N.
Liu
,
B.
Atakan
,
F.
Qi
, and
A.
McIlroy
, “
REMPI temperature measurement in molecular beam sampled low-pressure flames
,”
Proc. Combust. Inst.
29
(
2
),
2627
2633
(
2002
).

Supplementary Material

You do not currently have access to this content.