We formulate and implement the Variational Quantum Eigensolver Self Consistent Field (VQE-SCF) algorithm in combination with polarizable embedding (PE), thereby extending PE to the regime of quantum computing. We test the resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the computational stress on the quantum device is only slightly increased in terms of gate counts compared to regular VQE-SCF. On the other hand, no increase in shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling of real chemical systems using a simulation of the reaction barrier of the Diels–Alder reaction between furan and ethene as an example.
REFERENCES
1.
T.
Hoefler
, T.
Häner
, and M.
Troyer
, “Disentangling hype from practicality: On realistically achieving quantum advantage
,” Commun. ACM
66
, 82
–87
(2023
).2.
M. S.
Gordon
, G.
Barca
, S. S.
Leang
, D.
Poole
, A. P.
Rendell
, J. L.
Galvez Vallejo
, and B.
Westheimer
, “Novel computer architectures and quantum chemistry
,” J. Phys. Chem. A
124
, 4557
–4582
(2020
).3.
A.
Aspuru-Guzik
, A. D.
Dutoi
, P. J.
Love
, and M.
Head-Gordon
, “Simulated quantum computation of molecular energies
,” Science
309
, 1704
–1707
(2005
).4.
Y.
Cao
, J.
Romero
, J. P.
Olson
, M.
Degroote
, P. D.
Johnson
, M.
Kieferová
, I. D.
Kivlichan
, T.
Menke
, B.
Peropadre
, N. P. D.
Sawaya
, S.
Sim
, L.
Veis
, and A.
Aspuru-Guzik
, “Quantum chemistry in the age of quantum computing
,” Chem. Rev.
119
, 10856
–10915
(2019
).5.
B.
Bauer
, S.
Bravyi
, M.
Motta
, and G. K. L.
Chan
, “Quantum algorithms for quantum chemistry and quantum materials science
,” Chem. Rev.
120
, 12685
–12717
(2020
).6.
V. E.
Elfving
, B. W.
Broer
, M.
Webber
, J.
Gavartin
, M. D.
Halls
, K. P.
Lorton
, and A.
Bochevarov
, “How will quantum computers provide an industrially relevant computational advantage in quantum chemistry?
,” arXiv:2009.12472, 1
–20
(2020
).7.
S.
McArdle
, S.
Endo
, A.
Aspuru-Guzik
, S. C.
Benjamin
, and X.
Yuan
, “Quantum computational chemistry
,” Rev. Mod. Phys.
92
, 015003
(2020
).8.
M.
Motta
and J. E.
Rice
, “Emerging quantum computing algorithms for quantum chemistry
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
, e1580
(2022
).9.
J. C.
Aulicino
, T.
Keen
, and B.
Peng
, “State preparation and evolution in quantum computing: A perspective from Hamiltonian moments
,” Int. J. Quantum Chem.
122
, e26853
(2022
).10.
K.
Bharti
, A.
Cervera-Lierta
, T. H.
Kyaw
, T.
Haug
, S.
Alperin-Lea
, A.
Anand
, M.
Degroote
, H.
Heimonen
, J. S.
Kottmann
, T.
Menke
, W.-K.
Mok
, S.
Sim
, L.-C.
Kwek
, and A.
Aspuru-Guzik
, “Noisy intermediate-scale quantum algorithms
,” Rev. Mod. Phys.
94
, 015004
(2022
).11.
H.
Liu
, G. H.
Low
, D. S.
Steiger
, T.
Häner
, M.
Reiher
, and M.
Troyer
, “Prospects of quantum computing for molecular sciences
,” Mater. Theory
6
, 11
(2022
).12.
J. R.
McClean
, J.
Romero
, R.
Babbush
, and A.
Aspuru-Guzik
, “The theory of variational hybrid quantum-classical algorithms
,” New J. Phys.
18
, 023023
(2016
).13.
M.-H.
Yung
, J.
Casanova
, A.
Mezzacapo
, J.
McClean
, L.
Lamata
, A.
Aspuru-Guzik
, and E.
Solano
, “From transistor to trapped-ion computers for quantum chemistry
,” Sci. Rep.
4
, 3589
(2014
).14.
J.
Romero
, R.
Babbush
, J. R.
McClean
, C.
Hempel
, P. J.
Love
, and A.
Aspuru-Guzik
, “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,” Quantum Sci. Technol.
4
, 014008
(2018
).15.
D.
Wang
, O.
Higgott
, and S.
Brierley
, “Accelerated variational quantum eigensolver
,” Phys. Rev. Lett.
122
, 140504
(2019
).16.
D. A.
Fedorov
, B.
Peng
, N.
Govind
, and Y.
Alexeev
, “VQE method: A short survey and recent developments
,” Mater. Theory
6
, 2
(2022
).17.
T.
Helgaker
, P.
Jørgensen
, and J.
Olsen
, Molecular Electronic-Structure Theory
(John Wiley & Sons
, Nashville, TN
, 2013
).18.
O.
Christiansen
, “Coupled cluster theory with emphasis on selected new developments
,” Theor. Chem. Acc.
116
, 106
–123
(2006
).19.
R. J.
Bartlett
, “Coupled-cluster theory and its equation-of-motion extensions
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
, 126
–138
(2012
).20.
P.
Siegbahn
, A.
Heiberg
, B.
Roos
, and B.
Levy
, “A comparison of the super-CI and the Newton–Raphson scheme in the complete active space SCF method
,” Phys. Scr.
21
, 323
–327
(1980
).21.
B. O.
Roos
, P. R.
Taylor
, and P. E.
Sigbahn
, “A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,” Chem. Phys.
48
, 157
–173
(1980
).22.
P. E. M.
Siegbahn
, J.
Almlöf
, A.
Heiberg
, and B. O.
Roos
, “The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule
,” J. Chem. Phys.
74
, 2384
–2396
(1981
).23.
J.
Olsen
, B. O.
Roos
, P.
Jørgensen
, and H. J. A.
Jensen
, “Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,” J. Chem. Phys.
89
, 2185
–2192
(1988
).24.
A.
Baiardi
and M.
Reiher
, “The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,” J. Chem. Phys.
152
, 040903
(2020
).25.
R. M.
Parrish
, E. G.
Hohenstein
, P. L.
McMahon
, and T. J.
Martínez
, “Quantum computation of electronic transitions using a variational quantum eigensolver
,” Phys. Rev. Lett.
122
, 230401
(2019
).26.
N. P.
Bauman
, H.
Liu
, E. J.
Bylaska
, S.
Krishnamoorthy
, G. H.
Low
, C. E.
Granade
, N.
Wiebe
, N. A.
Baker
, B.
Peng
, M.
Roetteler
, M.
Troyer
, and K.
Kowalski
, “Toward quantum computing for high-energy excited states in molecular systems: Quantum phase estimations of core-level states
,” J. Chem. Theory Comput.
17
, 201
–210
(2021
).27.
A.
Fitzpatrick
, A.
Nykänen
, N. W.
Talarico
, A.
Lunghi
, S.
Maniscalco
, G.
García-Pérez
, and S.
Knecht
, “A Self-consistent field approach for the variational quantum eigensolver: Orbital optimization goes adaptive
,” preprint arXiv:2212.11405 (2022
).28.
B.
Mennucci
, “Polarizable continuum model
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
, 386
–404
(2012
).29.
J. M. H.
Olsen
, K.
Aidas
, and J.
Kongsted
, “Excited states in solution through polarizable embedding
,” J. Chem. Theory Comput.
6
, 3721
–3734
(2010
).30.
J. M. H.
Olsen
and J.
Kongsted
, “Molecular properties through polarizable embedding
,” Adv. Quantum Chem.
61
, 107
–143
(2011
).31.
D.
Castaldo
, S.
Jahangiri
, A.
Delgado
, and S.
Corni
, “Quantum simulation of molecules in solution
,” J. Chem. Theory Comput.
18
, 7457
–7469
(2022
).32.
E. G.
Hohenstein
, O.
Oumarou
, R.
Al-Saadon
, G.-L. R.
Anselmetti
, M.
Scheurer
, C.
Gogolin
, and R. M.
Parrish
, “Efficient quantum analytic nuclear gradients with double factorization
,” J. Chem. Phys.
158
, 114119
(2023
).33.
M.
Rossmannek
, F.
Pavosevic
, A.
Rubio
, and I.
Tavernelli
, “Quantum embedding method for the simulation of strongly correlated systems on quantum computers
,” J. Phys. Chem. Lett.
14
, 3491
–3497
(2023
).34.
J. M. H.
Olsen
, “Development of quantum chemical methods towards rationalization and optimal design of optically active proteins
,” Ph.D. thesis, University of Southern Denmark Faculty of Science
, 2012
.35.
A.
Stone
, The Theory of Intermolecular Forces
, 2nd ed. (Oxford University Press
, 2013
), ISBN: 0199672393.36.
H. R.
Grimsley
, S. E.
Economou
, E.
Barnes
, and N. J.
Mayhall
, “An adaptive variational algorithm for exact molecular simulations on a quantum computer
,” Nat. Commun.
10
, 3007
(2019
).37.
H. L.
Tang
, V.
Shkolnikov
, G. S.
Barron
, H. R.
Grimsley
, N. J.
Mayhall
, E.
Barnes
, and S. E.
Economou
, “Qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor
,” PRX Quantum
2
, 020310
(2021
).38.
Algorithmiq Ltd.
, Aurora (2023
).39.
Q.
Sun
, T. C.
Berkelbach
, N. S.
Blunt
, G. H.
Booth
, S.
Guo
, Z.
Li
, J.
Liu
, J. D.
McClain
, E. R.
Sayfutyarova
, S.
Sharma
, S.
Wouters
, and G. K.-L.
Chan
, “PySCF: The python-based simulations of chemistry framework
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
, e1340
(2017
).40.
Q.
Sun
, X.
Zhang
, S.
Banerjee
, P.
Bao
, M.
Barbry
, N. S.
Blunt
, N. A.
Bogdanov
, G. H.
Booth
, J.
Chen
, Z.-H.
Cui
, J. J.
Eriksen
, Y.
Gao
, S.
Guo
, J.
Hermann
, M. R.
Hermes
, K.
Koh
, P.
Koval
, S.
Lehtola
, Z.
Li
, J.
Liu
, N.
Mardirossian
, J. D.
McClain
, M.
Motta
, B.
Mussard
, H. Q.
Pham
, A.
Pulkin
, W.
Purwanto
, P. J.
Robinson
, E.
Ronca
, E. R.
Sayfutyarova
, M.
Scheurer
, H. F.
Schurkus
, J. E. T.
Smith
, C.
Sun
, S.-N.
Sun
, S.
Upadhyay
, L. K.
Wagner
, X.
Wang
, A.
White
, J. D.
Whitfield
, M. J.
Williamson
, S.
Wouters
, J.
Yang
, J. M.
Yu
, T.
Zhu
, T. C.
Berkelbach
, S.
Sharma
, A. Y.
Sokolov
, and G. K.-L.
Chan
, “Recent developments in the PySCF program package
,” J. Chem. Phys.
153
, 024109
(2020
).41.
M.
Scheurer
, P.
Reinholdt
, E. R.
Kjellgren
, J. M.
Haugaard Olsen
, A.
Dreuw
, and J.
Kongsted
, “CPPE: An open-source C++ and python library for polarizable embedding
,” J. Chem. Theory Comput.
15
, 6154
–6163
(2019
).42.
G.
García-Pérez
, M. A.
Rossi
, B.
Sokolov
, F.
Tacchino
, P. K.
Barkoutsos
, G.
Mazzola
, I.
Tavernelli
, and S.
Maniscalco
, “Learning to measure: Adaptive informationally complete generalized measurements for quantum algorithms
,” PRX Quantum
2
, 040342
(2021
).43.
A.
Glos
, A.
Nykänen
, E.-M.
Borrelli
, S.
Maniscalco
, M. A.
Rossi
, Z.
Zimborás
, and G.
García-Pérez
, “Adaptive POVM implementations and measurement error mitigation strategies for near-term quantum devices
,” preprint arXiv:2208.07817 (2022
).44.
A.
Nykänen
, M. A. C.
Rossi
, E.-M.
Borrelli
, S.
Maniscalco
, and G.
García-Pérez
, “Mitigating the measurement overhead of ADAPT-VQE with optimised informationally complete generalised measurements
,” arXiv: 2212.09719 (2022
).45.
S.
Filippov
, M.
Leahy
, M. A. C.
Rossi
, and G.
García-Pérez
, “Scalable tensor-network error mitigation for near-term quantum computing
,” arXiv:2307.11740 [quant-ph] (2023
).46.
T. H.
Dunning
, “Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen
,” J. Chem. Phys.
90
, 1007
–1023
(1989
).47.
R. A.
Kendall
, T. H.
Dunning
, and R. J.
Harrison
, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,” J. Chem. Phys.
96
, 6796
–6806
(1992
).48.
L.
Gagliardi
, R.
Lindh
, and G.
Karlström
, “Local properties of quantum chemical systems: The loprop approach
,” J. Chem. Phys.
121
, 4494
–4500
(2004
).49.
G.
Henkelman
, B. P.
Uberuaga
, and H.
Jónsson
, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,” J. Chem. Phys.
113
, 9901
–9904
(2000
).50.
T.
Goumans
, C. R. A.
Catlow
, W. A.
Brown
, J.
Kästner
, and P.
Sherwood
, “An embedded cluster study of the formation of water on interstellar dust grains
,” Phys. Chem. Chem. Phys.
11
, 5431
–5436
(2009
).51.
L.
Martínez
, R.
Andrade
, E. G.
Birgin
, and J. M.
Martínez
, “PACKMOL: A package for building initial configurations for molecular dynamics simulations
,” J. Comput. Chem.
30
, 2157
–2164
(2009
).52.
T.
Yanai
, D. P.
Tew
, and N. C.
Handy
, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,” Chem. Phys. Lett.
393
, 51
–57
(2004
).53.
S.
Grimme
, J.
Antony
, S.
Ehrlich
, and H.
Krieg
, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,” J. Chem. Phys.
132
, 154104
(2010
).54.
S.
Grimme
, S.
Ehrlich
, and L.
Goerigk
, “Effect of the damping function in dispersion corrected density functional theory
,” J. Comput. Chem.
32
, 1456
–1465
(2011
).55.
R.
Ditchfield
, W. J.
Hehre
, and J. A.
Pople
, “Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
,” J. Chem. Phys.
54
, 724
–728
(1971
).56.
W. J.
Hehre
, R.
Ditchfield
, and J. A.
Pople
, “Self—Consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules
,” J. Chem. Phys.
56
, 2257
–2261
(1972
).57.
P. C.
Hariharan
and J. A.
Pople
, “The influence of polarization functions on molecular orbital hydrogenation energies
,” Theor. Chim. Acta
28
, 213
–222
(1973
).58.
I. S.
Ufimtsev
and T. J.
Martinez
, “Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,” J. Chem. Theory Comput.
5
, 2619
–2628
(2009
).59.
A. V.
Titov
, I. S.
Ufimtsev
, N.
Luehr
, and T. J.
Martinez
, “Generating efficient quantum chemistry codes for novel architectures
,” J. Chem. Theory Comput.
9
, 213
–221
(2013
).60.
S.
Seritan
, C.
Bannwarth
, B. S.
Fales
, E. G.
Hohenstein
, C. M.
Isborn
, S. I.
Kokkila-Schumacher
, X.
Li
, F.
Liu
, N.
Luehr
, J. W.
Snyder
, Jr. et al, “TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
, e1494
(2021
).61.
D.
Kraft
, “A software package for sequential quadratic programming
,” Forschungsber. - Dtsch. Forsch.- Versuchsanst. Luft- Raumfahrt
Technical Report, DFVLR-FB 88-28, Institut für Dynamik der Flugsysteme, Oberpfaffenhofen (July 1988
).62.
P.
Virtanen
, R.
Gommers
, T. E.
Oliphant
, M.
Haberland
, T.
Reddy
, D.
Cournapeau
, E.
Burovski
, P.
Peterson
, W.
Weckesser
, J.
Bright
et al, “SciPy 1.0: Fundamental algorithms for scientific computing in python
,” Nat. Methods
17
, 261
–272
(2020
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.