We formulate and implement the Variational Quantum Eigensolver Self Consistent Field (VQE-SCF) algorithm in combination with polarizable embedding (PE), thereby extending PE to the regime of quantum computing. We test the resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the computational stress on the quantum device is only slightly increased in terms of gate counts compared to regular VQE-SCF. On the other hand, no increase in shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling of real chemical systems using a simulation of the reaction barrier of the Diels–Alder reaction between furan and ethene as an example.

1.
T.
Hoefler
,
T.
Häner
, and
M.
Troyer
, “
Disentangling hype from practicality: On realistically achieving quantum advantage
,”
Commun. ACM
66
,
82
87
(
2023
).
2.
M. S.
Gordon
,
G.
Barca
,
S. S.
Leang
,
D.
Poole
,
A. P.
Rendell
,
J. L.
Galvez Vallejo
, and
B.
Westheimer
, “
Novel computer architectures and quantum chemistry
,”
J. Phys. Chem. A
124
,
4557
4582
(
2020
).
3.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
, “
Simulated quantum computation of molecular energies
,”
Science
309
,
1704
1707
(
2005
).
4.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
,
M.
Degroote
,
P. D.
Johnson
,
M.
Kieferová
,
I. D.
Kivlichan
,
T.
Menke
,
B.
Peropadre
,
N. P. D.
Sawaya
,
S.
Sim
,
L.
Veis
, and
A.
Aspuru-Guzik
, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
,
10856
10915
(
2019
).
5.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
, and
G. K. L.
Chan
, “
Quantum algorithms for quantum chemistry and quantum materials science
,”
Chem. Rev.
120
,
12685
12717
(
2020
).
6.
V. E.
Elfving
,
B. W.
Broer
,
M.
Webber
,
J.
Gavartin
,
M. D.
Halls
,
K. P.
Lorton
, and
A.
Bochevarov
, “
How will quantum computers provide an industrially relevant computational advantage in quantum chemistry?
,” arXiv:2009.12472,
1
20
(
2020
).
7.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S. C.
Benjamin
, and
X.
Yuan
, “
Quantum computational chemistry
,”
Rev. Mod. Phys.
92
,
015003
(
2020
).
8.
M.
Motta
and
J. E.
Rice
, “
Emerging quantum computing algorithms for quantum chemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1580
(
2022
).
9.
J. C.
Aulicino
,
T.
Keen
, and
B.
Peng
, “
State preparation and evolution in quantum computing: A perspective from Hamiltonian moments
,”
Int. J. Quantum Chem.
122
,
e26853
(
2022
).
10.
K.
Bharti
,
A.
Cervera-Lierta
,
T. H.
Kyaw
,
T.
Haug
,
S.
Alperin-Lea
,
A.
Anand
,
M.
Degroote
,
H.
Heimonen
,
J. S.
Kottmann
,
T.
Menke
,
W.-K.
Mok
,
S.
Sim
,
L.-C.
Kwek
, and
A.
Aspuru-Guzik
, “
Noisy intermediate-scale quantum algorithms
,”
Rev. Mod. Phys.
94
,
015004
(
2022
).
11.
H.
Liu
,
G. H.
Low
,
D. S.
Steiger
,
T.
Häner
,
M.
Reiher
, and
M.
Troyer
, “
Prospects of quantum computing for molecular sciences
,”
Mater. Theory
6
,
11
(
2022
).
12.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
, “
The theory of variational hybrid quantum-classical algorithms
,”
New J. Phys.
18
,
023023
(
2016
).
13.
M.-H.
Yung
,
J.
Casanova
,
A.
Mezzacapo
,
J.
McClean
,
L.
Lamata
,
A.
Aspuru-Guzik
, and
E.
Solano
, “
From transistor to trapped-ion computers for quantum chemistry
,”
Sci. Rep.
4
,
3589
(
2014
).
14.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P. J.
Love
, and
A.
Aspuru-Guzik
, “
Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
4
,
014008
(
2018
).
15.
D.
Wang
,
O.
Higgott
, and
S.
Brierley
, “
Accelerated variational quantum eigensolver
,”
Phys. Rev. Lett.
122
,
140504
(
2019
).
16.
D. A.
Fedorov
,
B.
Peng
,
N.
Govind
, and
Y.
Alexeev
, “
VQE method: A short survey and recent developments
,”
Mater. Theory
6
,
2
(
2022
).
17.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
Nashville, TN
,
2013
).
18.
O.
Christiansen
, “
Coupled cluster theory with emphasis on selected new developments
,”
Theor. Chem. Acc.
116
,
106
123
(
2006
).
19.
R. J.
Bartlett
, “
Coupled-cluster theory and its equation-of-motion extensions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
126
138
(
2012
).
20.
P.
Siegbahn
,
A.
Heiberg
,
B.
Roos
, and
B.
Levy
, “
A comparison of the super-CI and the Newton–Raphson scheme in the complete active space SCF method
,”
Phys. Scr.
21
,
323
327
(
1980
).
21.
B. O.
Roos
,
P. R.
Taylor
, and
P. E.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
22.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
, “
The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule
,”
J. Chem. Phys.
74
,
2384
2396
(
1981
).
23.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
2192
(
1988
).
24.
A.
Baiardi
and
M.
Reiher
, “
The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,”
J. Chem. Phys.
152
,
040903
(
2020
).
25.
R. M.
Parrish
,
E. G.
Hohenstein
,
P. L.
McMahon
, and
T. J.
Martínez
, “
Quantum computation of electronic transitions using a variational quantum eigensolver
,”
Phys. Rev. Lett.
122
,
230401
(
2019
).
26.
N. P.
Bauman
,
H.
Liu
,
E. J.
Bylaska
,
S.
Krishnamoorthy
,
G. H.
Low
,
C. E.
Granade
,
N.
Wiebe
,
N. A.
Baker
,
B.
Peng
,
M.
Roetteler
,
M.
Troyer
, and
K.
Kowalski
, “
Toward quantum computing for high-energy excited states in molecular systems: Quantum phase estimations of core-level states
,”
J. Chem. Theory Comput.
17
,
201
210
(
2021
).
27.
A.
Fitzpatrick
,
A.
Nykänen
,
N. W.
Talarico
,
A.
Lunghi
,
S.
Maniscalco
,
G.
García-Pérez
, and
S.
Knecht
, “
A Self-consistent field approach for the variational quantum eigensolver: Orbital optimization goes adaptive
,” preprint arXiv:2212.11405 (
2022
).
28.
B.
Mennucci
, “
Polarizable continuum model
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
386
404
(
2012
).
29.
J. M. H.
Olsen
,
K.
Aidas
, and
J.
Kongsted
, “
Excited states in solution through polarizable embedding
,”
J. Chem. Theory Comput.
6
,
3721
3734
(
2010
).
30.
J. M. H.
Olsen
and
J.
Kongsted
, “
Molecular properties through polarizable embedding
,”
Adv. Quantum Chem.
61
,
107
143
(
2011
).
31.
D.
Castaldo
,
S.
Jahangiri
,
A.
Delgado
, and
S.
Corni
, “
Quantum simulation of molecules in solution
,”
J. Chem. Theory Comput.
18
,
7457
7469
(
2022
).
32.
E. G.
Hohenstein
,
O.
Oumarou
,
R.
Al-Saadon
,
G.-L. R.
Anselmetti
,
M.
Scheurer
,
C.
Gogolin
, and
R. M.
Parrish
, “
Efficient quantum analytic nuclear gradients with double factorization
,”
J. Chem. Phys.
158
,
114119
(
2023
).
33.
M.
Rossmannek
,
F.
Pavosevic
,
A.
Rubio
, and
I.
Tavernelli
, “
Quantum embedding method for the simulation of strongly correlated systems on quantum computers
,”
J. Phys. Chem. Lett.
14
,
3491
3497
(
2023
).
34.
J. M. H.
Olsen
, “
Development of quantum chemical methods towards rationalization and optimal design of optically active proteins
,” Ph.D. thesis,
University of Southern Denmark Faculty of Science
,
2012
.
35.
A.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Oxford University Press
,
2013
), ISBN: 0199672393.
36.
H. R.
Grimsley
,
S. E.
Economou
,
E.
Barnes
, and
N. J.
Mayhall
, “
An adaptive variational algorithm for exact molecular simulations on a quantum computer
,”
Nat. Commun.
10
,
3007
(
2019
).
37.
H. L.
Tang
,
V.
Shkolnikov
,
G. S.
Barron
,
H. R.
Grimsley
,
N. J.
Mayhall
,
E.
Barnes
, and
S. E.
Economou
, “
Qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor
,”
PRX Quantum
2
,
020310
(
2021
).
38.
Algorithmiq Ltd.
, Aurora (
2023
).
39.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
40.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
41.
M.
Scheurer
,
P.
Reinholdt
,
E. R.
Kjellgren
,
J. M.
Haugaard Olsen
,
A.
Dreuw
, and
J.
Kongsted
, “
CPPE: An open-source C++ and python library for polarizable embedding
,”
J. Chem. Theory Comput.
15
,
6154
6163
(
2019
).
42.
G.
García-Pérez
,
M. A.
Rossi
,
B.
Sokolov
,
F.
Tacchino
,
P. K.
Barkoutsos
,
G.
Mazzola
,
I.
Tavernelli
, and
S.
Maniscalco
, “
Learning to measure: Adaptive informationally complete generalized measurements for quantum algorithms
,”
PRX Quantum
2
,
040342
(
2021
).
43.
A.
Glos
,
A.
Nykänen
,
E.-M.
Borrelli
,
S.
Maniscalco
,
M. A.
Rossi
,
Z.
Zimborás
, and
G.
García-Pérez
, “
Adaptive POVM implementations and measurement error mitigation strategies for near-term quantum devices
,” preprint arXiv:2208.07817 (
2022
).
44.
A.
Nykänen
,
M. A. C.
Rossi
,
E.-M.
Borrelli
,
S.
Maniscalco
, and
G.
García-Pérez
, “
Mitigating the measurement overhead of ADAPT-VQE with optimised informationally complete generalised measurements
,” arXiv: 2212.09719 (
2022
).
45.
S.
Filippov
,
M.
Leahy
,
M. A. C.
Rossi
, and
G.
García-Pérez
, “
Scalable tensor-network error mitigation for near-term quantum computing
,” arXiv:2307.11740 [quant-ph] (
2023
).
46.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
47.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
48.
L.
Gagliardi
,
R.
Lindh
, and
G.
Karlström
, “
Local properties of quantum chemical systems: The loprop approach
,”
J. Chem. Phys.
121
,
4494
4500
(
2004
).
49.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
50.
T.
Goumans
,
C. R. A.
Catlow
,
W. A.
Brown
,
J.
Kästner
, and
P.
Sherwood
, “
An embedded cluster study of the formation of water on interstellar dust grains
,”
Phys. Chem. Chem. Phys.
11
,
5431
5436
(
2009
).
51.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
52.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
53.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
54.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
55.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
,”
J. Chem. Phys.
54
,
724
728
(
1971
).
56.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self—Consistent molecular orbital methods. XII. Further extensions of Gaussian—Type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
57.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
58.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
59.
A. V.
Titov
,
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
, “
Generating efficient quantum chemistry codes for novel architectures
,”
J. Chem. Theory Comput.
9
,
213
221
(
2013
).
60.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
C. M.
Isborn
,
S. I.
Kokkila-Schumacher
,
X.
Li
,
F.
Liu
,
N.
Luehr
,
J. W.
Snyder
, Jr.
et al, “
TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1494
(
2021
).
61.
D.
Kraft
, “
A software package for sequential quadratic programming
,”
Forschungsber. - Dtsch. Forsch.- Versuchsanst. Luft- Raumfahrt
Technical Report, DFVLR-FB 88-28, Institut für Dynamik der Flugsysteme, Oberpfaffenhofen (July
1988
).
62.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
et al, “
SciPy 1.0: Fundamental algorithms for scientific computing in python
,”
Nat. Methods
17
,
261
272
(
2020
).
You do not currently have access to this content.