Incorporating self-interaction corrections (SIC) significantly improves chemical reaction barrier height predictions made using density functional theory methods. We present a detailed orbital-by-orbital analysis of these corrections for three semi-local density functional approximations (DFAs) situated on the three lowest rungs of Jacob’s ladder of approximations. The analysis is based on Fermi–Löwdin Orbital Self-Interaction Correction (FLOSIC) calculations performed at several steps along the reaction pathway from the reactants (R) to the transition state (TS) to the products (P) for four representative reactions selected from the BH76 benchmark set. For all three functionals, the major contribution to self-interaction corrections of the barrier heights can be traced to stretched bond orbitals that develop near the TS configuration. The magnitude of the ratio of the self-exchange–correlation energy to the self-Hartree energy (XC/H) for a given orbital is introduced as an indicator of one-electron self-interaction error. XC/H = 1.0 implies that an orbital’s self-exchange–correlation energy exactly cancels its self-Hartree energy and that the orbital, therefore, makes no contribution to the SIC in the FLOSIC scheme. For the practical DFAs studied here, XC/H spans a range of values. The largest values are obtained for stretched or strongly lobed orbitals. We show that significant differences in XC/H for corresponding orbitals in the R, TS, and P configurations can be used to identify the major contributors to the SIC of barrier heights and reaction energies. Based on such comparisons, we suggest that barrier height predictions made using the strongly constrained and appropriately normed meta-generalized gradient approximation may have attained the best accuracy possible for a semi-local functional using the Perdew–Zunger SIC approach.

1.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
2.
J. W.
Furness
,
A. D.
Kaplan
,
J.
Ning
,
J. P.
Perdew
, and
J.
Sun
, “
Accurate and numerically efficient r2SCAN meta-generalized gradient approximation
,”
J. Phys. Chem. Lett.
11
,
8208
8215
(
2020
).
3.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
,
M. L.
Klein
, and
J. P.
Perdew
, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
(
2016
).
4.
C.
Shahi
,
J.
Sun
, and
J. P.
Perdew
, “
Accurate critical pressures for structural phase transitions of group IV, III-V, and II-VI compounds from the SCAN density functional
,”
Phys. Rev. B
97
,
094111
(
2018
).
5.
Y.
Zhang
,
D. A.
Kitchaev
,
J.
Yang
,
T.
Chen
,
S. T.
Dacek
,
R. A.
Sarmiento-Perez
,
M. A. L.
Marques
,
H.
Peng
,
G.
Ceder
,
J. P.
Perdew
, and
J.
Sun
, “
Efficient first-principles prediction of solid stability: Towards chemical accuracy
,”
npj Comput. Mater.
4
,
9
(
2018
).
6.
P. B.
Shukla
,
P.
Mishra
,
T.
Baruah
,
R. R.
Zope
,
K. A.
Jackson
, and
J. K.
Johnson
, “
How do self-interaction errors associated with stretched bonds affect barrier height predictions?
,”
J. Phys. Chem. A
127
,
1750
(
2023
).
7.
Y.
Zhang
and
W.
Yang
, “
A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons
,”
J. Chem. Phys.
109
,
2604
2608
(
1998
).
8.
B. J.
Lynch
and
D. G.
Truhlar
, “
How well can hybrid density functional methods predict transition state geometries and barrier heights?
,”
J. Phys. Chem. A
105
,
2936
2941
(
2001
).
9.
Y.
Zhao
and
D. G.
Truhlar
, “
Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions
,”
J. Phys. Chem. A
109
,
5656
5667
(
2005
).
10.
X.
Xu
,
I. M.
Alecu
, and
D. G.
Truhlar
, “
How well can modern density functionals predict internuclear distances at transition states?
,”
J. Chem. Theory Comput.
7
,
1667
1676
(
2011
).
11.
B. S.
Jursic
, “
Ab initio and hybrid density functional theory studies of the forward and reverse barriers for the C2H4 + H → C2H5 reaction
,”
J. Chem. Soc., Perkin Trans. 2
2
,
637
642
(
1997
).
12.
S.
Patchkovskii
and
T.
Ziegler
, “
Improving “difficult” reaction barriers with self-interaction corrected density functional theory
,”
J. Chem. Phys.
116
,
7806
7813
(
2002
).
13.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits
,”
J. Chem. Phys.
120
,
524
539
(
2004
).
14.
D.
Porezag
and
M. R.
Pederson
, “
Density functional based studies of transition states and barriers for hydrogen exchange and abstraction reactions
,”
J. Chem. Phys.
102
,
9345
(
1995
).
15.
B. G.
Janesko
and
G. E.
Scuseria
, “
Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals
,”
J. Chem. Phys.
128
,
244112
(
2008
).
16.
P.
Mishra
,
Y.
Yamamoto
,
J. K.
Johnson
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction-errors in barrier heights using locally scaled and Perdew-Zunger self-interaction methods
,”
J. Chem. Phys.
156
,
014306
(
2022
).
17.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
18.
M. R.
Pederson
, “
Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms
,”
J. Chem. Phys.
142
,
064112
(
2015
).
19.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
20.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
(
1992
).
21.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
22.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
23.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
, “
Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics
,”
Phys. Chem. Chem. Phys.
7
,
43
52
(
2005
).
24.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
, “
The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights
,”
J. Chem. Theory Comput.
5
,
808
821
(
2009
).
25.
A. D.
Kaplan
,
C.
Shahi
,
P.
Bhetwal
,
R. K.
Sah
, and
J. P.
Perdew
, “
Understanding density-driven errors for reaction barrier heights
,”
J. Chem. Theory Comput.
19
,
532
543
(
2023
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
E.
Sim
,
S.
Song
, and
K.
Burke
, “
Quantifying density errors in DFT
,”
J. Phys. Chem. Lett.
9
,
6385
6392
(
2018
).
28.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
Understanding and reducing errors in density functional calculations
,”
Phys. Rev. Lett.
111
,
073003
(
2013
).
29.
A.
Wasserman
,
J.
Nafziger
,
K.
Jiang
,
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
The importance of being inconsistent
,”
Annu. Rev. Phys. Chem.
68
,
555
581
(
2017
).
30.
D. J.
Hernandez
,
A.
Rettig
, and
M.
Head-Gordon
, “
A new view on density corrected DFT: Can one get a better answer for a good reason?
,” arXiv:2306.15016v1 [physics.chem-ph] (
2023
).
31.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
(
2001
).
32.
W. T.
Schulze
,
S.
Schwalbe
,
K.
Trepte
,
A.
Croy
,
J.
Kortus
, and
S.
Gräfe
, “
Bond formation insights into the Diels–Alder reaction: A bond perception and self-interaction perspective
,”
J. Chem. Phys.
158
,
164102
(
2023
).
33.
A. I.
Johnson
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
J. E.
Peralta
, and
K. A.
Jackson
, “
The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
,”
J. Chem. Phys.
151
,
174106
(
2019
).
34.
K.
Trepte
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
D.-y.
Kao
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
K. P. K.
Withanage
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Analytic atomic gradients in the Fermi-Löwdin orbital self-interaction correction
,”
J. Comput. Chem.
40
,
820
825
(
2019
).
35.
B. J.
Lynch
and
D. G.
Truhlar
, “
Small representative benchmarks for thermochemical calculations
,”
J. Phys. Chem. A
107
,
8996
8999
(
2003
).
36.
R. R.
Zope
,
T.
Baruah
, and
K. A.
Jackson
, “
Flosic public release code
,”
based on the NRLMOL code of M. R. Pederson
(accessed 11 May 2021).
37.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
(
1990
).
38.
K.
Jackson
and
M. R.
Pederson
, “
Accurate forces in a local-orbital approach to the local-density approximation
,”
Phys. Rev. B
42
,
3276
(
1990
).
39.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
(
1999
).
40.
S.
Akter
,
Y.
Yamamoto
,
C. M.
Diaz
,
K. A.
Jackson
,
R. R.
Zope
, and
T.
Baruah
, “
Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods
,”
J. Chem. Phys.
153
,
164304
(
2020
).
41.
A.
Karanovich
,
Y.
Yamamoto
,
K. A.
Jackson
, and
K.
Park
, “
Electronic structure of mononuclear cu-based molecule from density-functional theory with self-interaction correction
,”
J. Chem. Phys.
155
,
014106
(
2021
).
42.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
43.
P.
Verma
,
Y.
Wang
,
S.
Ghosh
,
X.
He
, and
D. G.
Truhlar
, “
Revised M11 exchange-correlation functional for electronic excitation energies and ground-state properties
,”
J. Phys. Chem. A
123
,
2966
2990
(
2019
).
44.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
et al, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
45.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Assessment of a long-range corrected hybrid functional
,”
J. Chem. Phys.
125
,
234109
(
2006
).
46.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L. J.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
47.
B.
Kanungo
,
A. D.
Kaplan
,
C.
Shahi
,
V.
Gavini
, and
J. P.
Perdew
, “
Unconventional error cancellation explains the success of Hartree-Fock density functional theory for barrier heights
,”
J. Phys. Chem. Lett.
15
,
323
(
2024
).
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
GAUSSIAN 16 Revision B.01
,
Gaussian Inc.
,
Wallingford CT
,
2016
.
49.
S.
Akter
,
J. A.
Vargas
,
K.
Sharkas
,
J. E.
Peralta
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
How well do self-interaction corrections repair the overestimation of static polarizabilities in density functional calculations?
,”
Phys. Chem. Chem. Phys.
23
,
18678
18685
(
2021
).
50.
B.
Santra
and
J. P.
Perdew
, “
Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
,”
J. Chem. Phys.
150
,
174106
(
2019
).
51.
Y.
Yamamoto
,
S.
Romero
,
T.
Baruah
, and
R. R.
Zope
, “
Improvements in the orbitalwise scaling down of Perdew–Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
152
,
174112
(
2020
).
52.
S.
Romero
,
Y.
Yamamoto
,
T.
Baruah
, and
R. R.
Zope
, “
Local self-interaction correction method with a simple scaling factor
,”
Phys. Chem. Chem. Phys.
23
,
2406
2418
(
2021
).
53.
P.
Bhattarai
,
K.
Wagle
,
C.
Shahi
,
Y.
Yamamoto
,
S.
Romero
,
B.
Santra
,
R. R.
Zope
,
J. E.
Peralta
,
K. A.
Jackson
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. Gauge consistency of the energy density at three levels of approximation
,”
J. Chem. Phys.
152
,
214109
(
2020
).

Supplementary Material

You do not currently have access to this content.