Nuclear receptors regulate transcriptional programs in response to the binding of natural and synthetic ligands. These ligands modulate the receptor by inducing dynamic changes in the ligand binding domain that shift the C-terminal helix (H12) between active and inactive conformations. Despite decades of study, many questions persist regarding the nature of the inactive state and how ligands shift receptors between different states. Here, we use molecular dynamics (MD) simulations to investigate the timescale and energetic landscape of the conformational transition between inactive and active forms of progesterone receptor (PR) bound to a partial agonist. We observe that the microsecond timescale is insufficient to observe any transitions; only at millisecond timescales achieved via accelerated MD simulations do we find the inactive PR switches to the active state. Energetic analysis reveals that both active and inactive PR states represent energy minima separated by a barrier that can be traversed. In contrast, little or no transition is observed between active and inactive states when an agonist or antagonist is bound, confirming that ligand identity plays a key role in defining the energy landscape of nuclear receptor conformations.

1.
D. J.
Kojetin
and
T. P.
Burris
, “
Small molecule modulation of nuclear receptor conformational dynamics: Implications for function and drug discovery
,”
Mol. Pharmacol.
83
(
1
),
1
8
(
2013
).
2.
A. K.
Shiau
,
D.
Barstad
,
P. M.
Loria
,
L.
Cheng
,
P. J.
Kushner
,
D. A.
Agard
, and
G. L.
Greene
, “
The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen
,”
Cell
95
(
7
),
927
937
(
1998
).
3.
L.
Nagy
and
J. W. R.
Schwabe
, “
Mechanism of the nuclear receptor molecular switch
,”
Trends Biochem. Sci.
29
(
6
),
317
324
(
2004
).
4.
E. R.
Weikum
,
X.
Liu
, and
E. A.
Ortlund
, “
The nuclear receptor superfamily: A structural perspective
,”
Protein Sci.
27
(
11
),
1876
1892
(
2018
).
5.
D. M.
Tanenbaum
,
Y.
Wang
,
S. P.
Williams
, and
P. B.
Sigler
, “
Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains
,”
PNAS
95
(
11
),
5998
6003
(
1998
).
6.
P. F.
Egea
,
B. P.
Klaholz
, and
D.
Moras
, “
Ligand–protein interactions in nuclear receptors of hormones
,”
FEBS Lett.
476
(
1–2
),
62
67
(
2000
).
7.
M. R. B.
Batista
and
L.
Martínez
, “
Conformational diversity of the helix 12 of the ligand binding domain of PPARγ and functional implications
,”
J. Phys. Chem. B
119
(
50
),
15418
15429
(
2015
).
8.
M. R. B.
Batista
and
L.
Martínez
, “
Dynamics of nuclear receptor helix-12 switch of transcription activation by modeling time-resolved fluorescence anisotropy decays
,”
Biophys. J.
105
(
7
),
1670
1680
(
2013
).
9.
J.
Uppenberg
,
C.
Svensson
,
M.
Jaki
,
G.
Bertilsson
,
L.
Jendeberg
, and
A.
Berkenstam
, “
Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ
,”
J. Biol. Chem.
273
(
47
),
31108
31112
(
1998
).
10.
R. T.
Nolte
,
G. B.
Wisely
,
S.
Westin
,
J. E.
Cobb
,
M. H.
Lambert
,
R.
Kurokawa
,
M. G.
Rosenfeldk
,
T. M.
Willson
,
C. K.
Glass
, and
M.
V Milburn
, “
Ligand binding and Co-activator assembly of the peroxisome proliferator-activated receptor
,”
Nature
395
(
6698
),
137
143
(
1998
).
11.
T. S.
Hughes
,
M. J.
Chalmers
,
S.
Novick
,
D. S.
Kuruvilla
,
M. R.
Chang
,
T. M.
Kamenecka
,
M.
Rance
,
B. A.
Johnson
,
T. P.
Burris
,
P. R.
Griffin
, and
D. J.
Kojetin
, “
Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism
,”
Structure
20
(
1
),
139
150
(
2012
).
12.
A. C. W.
Pike
,
A. M.
Brzozowski
,
R. E.
Hubbard
,
T.
Bonn
,
A. G.
Thorsell
,
O.
Engström
,
J.
Ljunggren
,
J. Å.
Gustafsson
, and
M.
Carlquist
, “
Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist
,”
EMBO J.
18
(
17
),
4608
4618
(
1999
).
13.
J. B.
Bruning
,
A. A.
Parent
,
G.
Gil
,
M.
Zhao
,
J.
Nowak
,
M. C.
Pace
,
C. L.
Smith
,
P. V.
Afonine
,
P. D.
Adams
,
J. A.
Katzenellenbogen
, and
K. W.
Nettles
, “
Coupling of receptor conformation and ligand orientation determine graded activity
,”
Nat. Chem. Biol.
6
(
11
),
837
843
(
2010
).
14.
K.
Yamamoto
, “
Discovery of nuclear receptor ligands and elucidation of their mechanisms of action
,”
Chem. Pharm. Bull.
67
(
7
),
609
619
(
2019
).
15.
S. J.
Lusher
,
H. C. A.
Raaijmakers
,
D.
Vu-Pham
,
B.
Kazemier
,
R.
Bosch
,
R.
McGuire
,
R.
Azevedo
,
H.
Hamersma
,
K.
Dechering
,
A.
Oubrie
,
M.
Van Duin
, and
J.
De Vlieg
, “
X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids
,”
J. Biol. Chem.
287
(
24
),
20333
20343
(
2012
).
16.
K. P.
Madauss
,
E. T.
Grygielko
,
S. J.
Deng
,
A. C.
Sulpizio
,
T. B.
Stanley
,
C.
Wu
,
S. A.
Short
,
S. K.
Thompson
,
E. L.
Stewart
,
N. J.
Laping
,
S. P.
Williams
, and
J. D.
Bray
, “
A structural and in vitro characterization of asoprisnil: A selective progesterone receptor modulator
,”
Mol. Endocrinol.
21
(
5
),
1066
1081
(
2007
).
17.
L.
Zheng
,
K.
Xia
, and
Y.
Mu
, “
Ligand binding induces agonistic-like conformational adaptations in helix 12 of progesterone receptor ligand binding domain
,”
Front Chem
7
,
315
(
2019
).
18.
L. C. T.
Pierce
,
R.
Salomon-Ferrer
,
C.
Augusto
,
F.
de Oliveira
,
J. A.
McCammon
, and
R. C.
Walker
, “
Routine access to millisecond time scale events with accelerated molecular dynamics
,”
J. Chem. Theory Comput.
8
(
9
),
2997
3002
(
2012
).
19.
D.
Hamelberg
,
J.
Mongan
, and
J. A.
McCammon
, “
Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules
,”
J. Chem. Phys.
120
(
24
),
11919
11929
(
2004
).
20.
I. M.
Chrisman
,
M. D.
Nemetchek
,
I. M. S.
De Vera
,
J.
Shang
,
Z.
Heidari
,
Y.
Long
,
H.
Reyes-Caballero
,
R.
Galindo-Murillo
,
T. E.
Cheatham
,
A. L.
Blayo
,
Y.
Shin
,
J.
Fuhrmann
,
P. R.
Griffin
,
T. M.
Kamenecka
,
D. J.
Kojetin
, and
T. S.
Hughes
, “
Defining a conformational ensemble that directs activation of PPARγ
,”
Nat. Commun.
9
(
1
),
1794
(
2018
).
21.
Y.
Miao
,
V. A.
Feher
, and
J. A.
McCammon
, “
Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation
,”
J. Chem. Theory Comput.
11
(
8
),
3584
3595
(
2015
).
22.
Atomic structure of progesterone complexed with its receptor.
23.
H. C. A.
Raaijmakers
,
J. E.
Versteegh
, and
J. C.
Uitdehaag
, “
The x-ray structure of RU486 bound to the progesterone receptor in a destabilized agonistic conformation
,”
J. Biol. Chem.
284
(
29
),
19572
19579
(
2009
).
24.
L.
Zheng
,
V. C.
Lin
, and
Y.
Mu
, “
Exploring flexibility of progesterone receptor ligand binding domain using molecular dynamics
,”
PLoS One
11
(
11
),
e0165824
(
2016
).
25.
F.
Fratev
, “
Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: Evidence from molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
17
,
13403
13420
(
2015
).
26.
B.
Webb
and
A.
Sali
, “
Comparative protein structure modeling using modeller
,”
Curr. Protoc. Bioinf.
54
,
5.6.1
-
5.6.37
(
2016
).
27.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
(
2
),
247
260
(
2006
).
28.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general Amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
29.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
(
8
),
3696
3713
(
2015
).
30.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
31.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
D. S.
Cerutti
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
N.
Forouzesh
,
T. J.
Giese
,
A. W.
Götz
,
H.
Gohlke
,
S.
Izadi
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
T.
Kurtzman
,
T.-S.
Lee
,
P.
Li
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Manathunga
,
M. R.
Machado
,
H. M.
Nguyen
,
K. A.
O’Hearn
,
A. V.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
A.
Risheh
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Swails
,
J.
Wang
,
H.
Wei
,
X.
Wu
,
Y.
Wu
,
S.
Zhang
,
S.
Zhao
,
Q.
Zhu
,
T. E.
Cheatham
III
,
D. R.
Roe
,
A.
Roitberg
,
C.
Simmerling
,
D. M.
York
,
M. C.
Nagan
, and
K. M.
Merz
, Jr.
, “
AmberTools
,”
J. Chem. Inf. Model.
63
(
20
),
6183
6191
(
2023
).
32.
R.
Salomon-Ferrer
,
A. W.
Götz
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
,”
J. Chem. Theory Comput.
9
(
9
),
3878
3888
(
2013
).
33.
R. T.
McGibbon
,
K. A.
Beauchamp
,
M. P.
Harrigan
,
C.
Klein
,
J. M.
Swails
,
C. X.
Hernández
,
C. R.
Schwantes
,
L. P.
Wang
,
T. J.
Lane
, and
V. S.
Pande
, “
MDTraj: A modern open library for the analysis of molecular dynamics trajectories
,”
Biophys. J.
109
(
8
),
1528
1532
(
2015
).
34.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
, “
PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
,”
J. Chem. Theory Comput.
11
(
11
),
5525
5542
(
2015
).
35.
B. R.
Miller
III
,
T. D.
McGee
, Jr.
,
J. M.
Swails
,
N.
Homeyer
,
H.
Gohlke
, and
A. E.
Roitberg
, “
MMPBSA.py: An efficient program for end-state free energy calculations
,”
J. Chem. Theory Comput.
8
(
9
),
3314
3321
(
2012
).
36.
D. R.
Roe
and
T. E.
Cheatham
, “
PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
,”
J. Chem. Theory Comput.
9
(
7
),
3084
3095
(
2013
).
37.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
(
2
),
187
199
(
1977
).
38.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
(
8
),
1011
1021
(
1992
).

Supplementary Material

You do not currently have access to this content.