The diffusion of dilute molecular penetrants within polymers plays a crucial role in the advancement of material engineering for applications such as coatings and membrane separations. The potential of highly cross-linked polymer networks in these applications stems from their capacity to adjust the size and shape selectivity through subtle changes in network structures. In this paper, we use molecular dynamics simulation to understand the role of penetrant shape (aspect ratios) and its interaction with polymer networks on its diffusivity. We characterize both local penetrant hopping and the long-time diffusive motion for penetrants and consider different aspect ratios and penetrant–network interaction strengths at a variety of cross-link densities and temperatures. The shape affects the coupling of penetrant motion to the cross-link density- and temperature-dependent structural relaxation of networks and also affects the way a penetrant experiences the confinement from the network meshes. The attractive interaction between the penetrant and network primarily affects the former since only the system of dilute limit is of present interest. These results offer fundamental insights into the intricate interplay between penetrant characteristics and polymer network properties and also suggest future directions for manipulating polymer design to enhance the separation efficiency.

1.
H.
Wang
,
J. K.
Keum
,
A.
Hiltner
,
E.
Baer
,
B.
Freeman
,
A.
Rozanski
, and
A.
Galeski
, “
Confined crystallization of polyethylene oxide in nanolayer assemblies
,”
Science
323
,
757
760
(
2009
).
2.
J.
Lagaron
,
R.
Catalá
, and
R.
Gavara
, “
Structural characteristics defining high barrier properties in polymeric materials
,”
Mater. Sci. Technol.
20
,
1
7
(
2004
).
3.
P. E.
Burrows
,
G. L.
Graff
,
M. E.
Gross
,
P. M.
Martin
,
M.
Hall
,
E.
Mast
,
C. C.
Bonham
,
W. D.
Bennett
,
L. A.
Michalski
,
M. S.
Weaver
et al, “
Gas permeation and lifetime tests on polymer-based barrier coatings
,” in
Organic Light-Emitting Materials and Devices IV
(
SPIE
,
2001
), Vol.
4105
, pp.
75
83
.
4.
B. J.
Blaiszik
,
S. L.
Kramer
,
S. C.
Olugebefola
,
J. S.
Moore
,
N. R.
Sottos
, and
S. R.
White
, “
Self-healing polymers and composites
,”
Annu. Rev. Mater. Res.
40
,
179
211
(
2010
).
5.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
, “
Autonomic healing of polymer composites
,”
Nature
409
,
794
797
(
2001
).
6.
M. W.
Keller
and
N. R.
Sottos
, “
Mechanical properties of microcapsules used in a self-healing polymer
,”
Exp. Mech.
46
,
725
733
(
2006
).
7.
J. F.
Patrick
,
M. J.
Robb
,
N. R.
Sottos
,
J. S.
Moore
, and
S. R.
White
, “
Polymers with autonomous life-cycle control
,”
Nature
540
,
363
370
(
2016
).
8.
B. R.
Crenshaw
and
C.
Weder
, “
Phase separation of excimer-forming fluorescent dyes and amorphous polymers: A versatile mechanism for sensor applications
,”
Adv. Mater.
17
,
1471
1476
(
2005
).
9.
M.
Kinami
,
B. R.
Crenshaw
, and
C.
Weder
, “
Polyesters with built-in threshold temperature and deformation sensors
,”
Chem. Mater.
18
,
946
955
(
2006
).
10.
B. R.
Crenshaw
,
J.
Kunzelman
,
C. E.
Sing
,
C.
Ander
, and
C.
Weder
, “
Threshold temperature sensors with tunable properties
,”
Macromol. Chem. Phys.
208
,
572
580
(
2007
).
11.
C. E.
Sing
,
J.
Kunzelman
, and
C.
Weder
, “
Time–temperature indicators for high temperature applications
,”
J. Mater. Chem.
19
,
104
110
(
2009
).
12.
M.
Hamidi
,
A.
Azadi
, and
P.
Rafiei
, “
Hydrogel nanoparticles in drug delivery
,”
Adv. Drug Delivery Rev.
60
,
1638
1649
(
2008
).
13.
J.
Li
and
D. J.
Mooney
, “
Designing hydrogels for controlled drug delivery
,”
Nat. Rev. Mater.
1
,
16071
(
2016
).
14.
Z.
Sun
,
C.
Song
,
C.
Wang
,
Y.
Hu
, and
J.
Wu
, “
Hydrogel-based controlled drug delivery for cancer treatment: A review
,”
Mol. Pharmaceutics
17
,
373
391
(
2019
).
15.
M.
Carta
,
R.
Malpass-Evans
,
M.
Croad
,
Y.
Rogan
,
J. C.
Jansen
,
P.
Bernardo
,
F.
Bazzarelli
, and
N. B.
McKeown
, “
An efficient polymer molecular sieve for membrane gas separations
,”
Science
339
,
303
307
(
2013
).
16.
M.
Galizia
,
W. S.
Chi
,
Z. P.
Smith
,
T. C.
Merkel
,
R. W.
Baker
, and
B. D.
Freeman
, “
50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities
,”
Macromolecules
50
,
7809
7843
(
2017
).
17.
D. F.
Sanders
,
Z. P.
Smith
,
R.
Guo
,
L. M.
Robeson
,
J. E.
McGrath
,
D. R.
Paul
, and
B. D.
Freeman
, “
Energy-efficient polymeric gas separation membranes for a sustainable future: A review
,”
Polymer
54
,
4729
4761
(
2013
).
18.
R. W.
Baker
and
B. T.
Low
, “
Gas separation membrane materials: A perspective
,”
Macromolecules
47
,
6999
7013
(
2014
).
19.
S.
Wang
,
X.
Li
,
H.
Wu
,
Z.
Tian
,
Q.
Xin
,
G.
He
,
D.
Peng
,
S.
Chen
,
Y.
Yin
,
Z.
Jiang
, and
M. D.
Guiver
, “
Advances in high permeability polymer-based membrane materials for CO2 separations
,”
Energy Environ. Sci.
9
,
1863
1890
(
2016
).
20.
P.
Bernardo
,
E.
Drioli
, and
G.
Golemme
, “
Membrane gas separation: A review/state of the art
,”
Ind. Eng. Chem. Res.
48
,
4638
4663
(
2009
).
21.
Y.
Han
and
W. W.
Ho
, “
Polymeric membranes for CO2 separation and capture
,”
J. Membr. Sci.
628
,
119244
(
2021
).
22.
D. S.
Sholl
and
R. P.
Lively
, “
Seven chemical separations to change the world
,”
Nature
532
,
435
437
(
2016
).
23.
R. P.
Lively
and
D. S.
Sholl
, “
From water to organics in membrane separations
,”
Nat. Mater.
16
,
276
279
(
2017
).
24.
M.
Takht Ravanchi
,
T.
Kaghazchi
, and
A.
Kargari
, “
Application of membrane separation processes in petrochemical industry: A review
,”
Desalination
235
,
199
244
(
2009
).
25.
E.
Adatoz
,
A. K.
Avci
, and
S.
Keskin
, “
Opportunities and challenges of mof-based membranes in gas separations
,”
Sep. Purif. Technol.
152
,
207
237
(
2015
).
26.
Q.
Qian
,
P. A.
Asinger
,
M. J.
Lee
,
G.
Han
,
K.
Mizrahi Rodriguez
,
S.
Lin
,
F. M.
Benedetti
,
A. X.
Wu
,
W. S.
Chi
, and
Z. P.
Smith
, “
MOF-based membranes for gas separations
,”
Chem. Rev.
120
,
8161
8266
(
2020
).
27.
S.
Yuan
,
X.
Li
,
J.
Zhu
,
G.
Zhang
,
P.
Van Puyvelde
, and
B.
Van der Bruggen
, “
Covalent organic frameworks for membrane separation
,”
Chem. Soc. Rev.
48
,
2665
2681
(
2019
).
28.
H.
Yang
,
L.
Yang
,
H.
Wang
,
Z.
Xu
,
Y.
Zhao
,
Y.
Luo
,
N.
Nasir
,
Y.
Song
,
H.
Wu
,
F.
Pan
, and
Z.
Jiang
, “
Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations
,”
Nat. Commun.
10
,
2101
(
2019
).
29.
N.
Kosinov
,
J.
Gascon
,
F.
Kapteijn
, and
E. J.
Hensen
, “
Recent developments in zeolite membranes for gas separation
,”
J. Membr. Sci.
499
,
65
79
(
2016
).
30.
N.
Rangnekar
,
N.
Mittal
,
B.
Elyassi
,
J.
Caro
, and
M.
Tsapatsis
, “
Zeolite membranes—A review and comparison with MOFs
,”
Chem. Soc. Rev.
44
,
7128
7154
(
2015
).
31.
Z.
Lai
,
G.
Bonilla
,
I.
Diaz
,
J. G.
Nery
,
K.
Sujaoti
,
M. A.
Amat
,
E.
Kokkoli
,
O.
Terasaki
,
R. W.
Thompson
,
M.
Tsapatsis
, and
D. G.
Vlachos
, “
Microstructural optimization of a zeolite membrane for organic vapor separation
,”
Science
300
,
456
460
(
2003
).
32.
M.
Shah
,
M. C.
McCarthy
,
S.
Sachdeva
,
A. K.
Lee
, and
H.-K.
Jeong
, “
Current status of metal–organic framework membranes for gas separations: Promises and challenges
,”
Ind. Eng. Chem. Res.
51
,
2179
2199
(
2012
).
33.
D. B.
Mitzi
, “
Thin-film deposition of organic–inorganic hybrid materials
,”
Chem. Mater.
13
,
3283
3298
(
2001
).
34.
M. L.
Greenfield
and
D. N.
Theodorou
, “
Coupling of penetrant and polymer motions during small-molecule diffusion in a glassy polymer
,”
Mol. Simul.
19
,
329
361
(
1997
).
35.
Z.-X.
Low
,
P. M.
Budd
,
N. B.
McKeown
, and
D. A.
Patterson
, “
Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers
,”
Chem. Rev.
118
,
5871
5911
(
2018
).
36.
B. D.
Freeman
, “
Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes
,”
Macromolecules
32
,
375
380
(
1999
).
37.
W.
Koros
,
G.
Fleming
,
S.
Jordan
,
T.
Kim
, and
H.
Hoehn
, “
Polymeric membrane materials for solution-diffusion based permeation separations
,”
Prog. Polym. Sci.
13
,
339
401
(
1988
).
38.
X.
Feng
and
R. Y.
Huang
, “
Liquid separation by membrane pervaporation: A review
,”
Ind. Eng. Chem. Res.
36
,
1048
1066
(
1997
).
39.
G. S.
Sheridan
and
C. M.
Evans
, “
Understanding the roles of mesh size, Tg, and segmental dynamics on probe diffusion in dense polymer networks
,”
Macromolecules
54
,
11198
11208
(
2021
).
40.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
, “
How segmental dynamics and mesh confinement determine the selective diffusivity of molecules in cross-linked dense polymer networks
,”
ACS Cent. Sci.
9
,
508
518
(
2023
).
41.
B.
Mei
,
T.-W.
Lin
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Self-consistent hopping theory of activated relaxation and diffusion of dilute penetrants in dense crosslinked polymer networks
,”
J. Chem. Phys.
158
,
184901
(
2023
).
42.
T.-W.
Lin
,
B.
Mei
,
K. S.
Schweizer
, and
C. E.
Sing
, “
Simulation study of the effects of polymer network dynamics and mesh confinement on the diffusion and structural relaxation of penetrants
,”
J. Chem. Phys.
159
,
014904
(
2023
).
43.
Z. E.
Dell
and
K. S.
Schweizer
, “
Theory of localization and activated hopping of nanoparticles in cross-linked networks and entangled polymer melts
,”
Macromolecules
47
,
405
414
(
2014
).
44.
L.-H.
Cai
,
S.
Panyukov
, and
M.
Rubinstein
, “
Hopping diffusion of nanoparticles in polymer matrices
,”
Macromolecules
48
,
847
862
(
2015
).
45.
A.
Karatrantos
,
R. J.
Composto
,
K. I.
Winey
, and
N.
Clarke
, “
Nanorod diffusion in polymer nanocomposites by molecular dynamics simulations
,”
Macromolecules
52
,
2513
2520
(
2019
).
46.
M.
Smith
,
R.
Poling-Skutvik
,
A. H.
Slim
,
R. C.
Willson
, and
J. C.
Conrad
, “
Dynamics of flexible viruses in polymer solutions
,”
Macromolecules
54
,
4557
4563
(
2021
).
47.
J.
Wang
,
T. C.
O’Connor
,
G. S.
Grest
,
Y.
Zheng
,
M.
Rubinstein
, and
T.
Ge
, “
Diffusion of thin nanorods in polymer melts
,”
Macromolecules
54
,
7051
7059
(
2021
).
48.
M. J.
Kim
,
H. W.
Cho
,
J.
Kim
,
H.
Kim
, and
B. J.
Sung
, “
Translational and rotational diffusion of a single nanorod in unentangled polymer melts
,”
Phys. Rev. E
92
,
042601
(
2015
).
49.
B.-R.
Zhao
,
B.
Li
, and
X.
Shi
, “
Molecular simulation of the diffusion mechanism of nanorods in cross-linked networks
,”
Nanoscale
13
,
17404
17416
(
2021
).
50.
S.
Milster
,
W. K.
Kim
,
M.
Kanduč
, and
J.
Dzubiella
, “
Tuning the permeability of regular polymeric networks by the cross-link ratio
,”
J. Chem. Phys.
154
,
154902
(
2021
).
51.
D. S.
Simmons
and
J. F.
Douglas
, “
Nature and interrelations of fast dynamic properties in a coarse-grained glass-forming polymer melt
,”
Soft Matter
7
,
11010
11020
(
2011
).
52.
J. H.
Mangalara
,
M. E.
Mackura
,
M. D.
Marvin
, and
D. S.
Simmons
, “
The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials
,”
J. Chem. Phys.
146
,
203316
(
2017
).
53.
X.
Zheng
,
W.
Nie
,
Y.
Guo
,
J. F.
Douglas
, and
W.
Xia
, “
Influence of chain stiffness on the segmental dynamics and mechanical properties of cross-linked polymers
,”
Macromolecules
56
,
7636
7650
(
2023
).
54.
D.
Frenkel
and
B.
Smit
,
Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2000
).
55.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
56.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Structural relaxation and vitrification in dense cross-linked polymer networks: Simulation, theory, and experiment
,”
Macromolecules
55
,
4159
4173
(
2022
).
57.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
58.
T. S.
Jain
and
J. J.
de Pablo
, “
Influence of confinement on the vibrational density of states and the boson peak in a polymer glass
,”
J. Chem. Phys.
120
,
9371
9375
(
2004
).
59.
R. A.
Riggleman
,
H.-N.
Lee
,
M. D.
Ediger
, and
J. J.
de Pablo
, “
Free volume and finite-size effects in a polymer glass under stress
,”
Phys. Rev. Lett.
99
,
215501
(
2007
).
60.
R. H.
Colby
and
M.
Rubinstein
,
Polymer Physics
(
Oxford University
,
New-York
,
2003
), Vol.
100
, p.
274
.
61.
D. R.
Tree
,
A.
Muralidhar
,
P. S.
Doyle
, and
K. D.
Dorfman
, “
Is DNA a good model polymer?
,”
Macromolecules
46
,
8369
8382
(
2013
).
62.
S.
Dutta
,
T.
Pan
, and
C. E.
Sing
, “
Bridging simulation length scales of bottlebrush polymers using a wormlike cylinder model
,”
Macromolecules
52
,
4858
4874
(
2019
).
63.
J. F.
Coelho
,
E. Y.
Carvalho
,
D. S.
Marques
,
A. V.
Popov
,
V.
Percec
, and
M.
Gil
, “
Influence of the isomeric structures of butyl acrylate on its single-electron transfer-degenerative chain transfer living radical polymerization in water catalyzed by Na2S2O4
,”
J. Polym. Sci., Part A: Polym. Chem.
46
,
6542
6551
(
2008
).
64.
B.
Mei
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
, “
Two-step relaxation and the breakdown of the Stokes–Einstein relation in glass-forming liquids
,”
Phys. Rev. E
100
,
052607
(
2019
).
65.
A. J.
Moreno
and
F.
Lo Verso
, “
Computational investigation of microgels: Synthesis and effect of the microstructure on the deswelling behavior
,”
Soft Matter
14
,
7083
7096
(
2018
).
66.
E.
Minina
,
P.
Sánchez
,
C.
Likos
, and
S.
Kantorovich
, “
The influence of the magnetic filler concentration on the properties of a microgel particle: Zero-field case
,”
J. Magn. Magn. Mater.
459
,
226
230
(
2018
).
67.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
68.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
69.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
70.
C.
Bennemann
,
W.
Paul
,
J.
Baschnagel
, and
K.
Binder
, “
Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt
,”
J. Phys.: Condens. Matter
11
,
2179
(
1999
).
71.
R. A.
Riggleman
,
J. F.
Douglas
, and
J. J.
de Pablo
, “
Tuning polymer melt fragility with antiplasticizer additives
,”
J. Chem. Phys.
126
,
234903
(
2007
).
72.
A.
Shavit
and
R. A.
Riggleman
, “
Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers
,”
Macromolecules
46
,
5044
5052
(
2013
).
73.
D.
Diaz Vela
and
D. S.
Simmons
, “
The microscopic origins of stretched exponential relaxation in two model glass-forming liquids as probed by simulations in the isoconfigurational ensemble
,”
J. Chem. Phys.
153
,
234503
(
2020
).
74.
E. Y.
Lin
,
A. L.
Frischknecht
, and
R. A.
Riggleman
, “
Origin of mechanical enhancement in polymer nanoparticle (NP) composites with ultrahigh NP loading
,”
Macromolecules
53
,
2976
2982
(
2020
).
75.
T. Q.
McKenzie-Smith
,
J. F.
Douglas
, and
F. W.
Starr
, “
Explaining the sensitivity of polymer segmental relaxation to additive size based on the localization model
,”
Phys. Rev. Lett.
127
,
277802
(
2021
).
76.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol.
73
.
77.
B.
Mei
and
K. S.
Schweizer
, “
Penetrant shape effects on activated dynamics and selectivity in polymer melts and networks based on self-consistent cooperative hopping theory
,”
Soft Matter
19
,
8744
8763
(
2023
).
78.
R.
Zhang
and
K. S.
Schweizer
, “
Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions
,”
J. Chem. Phys.
146
,
194906
(
2017
).
79.
B.
Mei
and
K. S.
Schweizer
, “
Activated penetrant dynamics in glass forming liquids: Size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility
,”
Soft Matter
17
,
2624
2639
(
2021
).
80.
B.
Mei
,
G. S.
Sheridan
,
C. M.
Evans
, and
K. S.
Schweizer
, “
Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2210094119
(
2022
).
81.
B.
Mei
and
K. S.
Schweizer
, “
Theory of the effects of specific attractions and chain connectivity on the activated dynamics and selective transport of penetrants in polymer melts
,”
Macromolecules
55
,
9134
9151
(
2022
).
82.
F. H.
Stillinger
and
J. A.
Hodgdon
, “
Translation–rotation paradox for diffusion in fragile glass-forming liquids
,”
Phys. Rev. E
50
,
2064
(
1994
).
83.
H.
Sillescu
, “
Comment on ‘Translation–rotation paradox for diffusion in fragile glass-forming liquids
,’”
Phys. Rev. E
53
,
2992
(
1996
).
84.
M. T.
Cicerone
,
F.
Blackburn
, and
M.
Ediger
, “
How do molecules move near Tg? Molecular rotation of six probes in o-terphenyl across 14 decades in time
,”
J. Chem. Phys.
102
,
471
479
(
1995
).
85.
M. T.
Cicerone
,
F.
Blackburn
, and
M.
Ediger
, “
Anomalous diffusion of probe molecules in polystyrene: Evidence for spatially heterogeneous segmental dynamics
,”
Macromolecules
28
,
8224
8232
(
1995
).
86.
M. T.
Cicerone
and
M. D.
Ediger
, “
Enhanced translation of probe molecules in supercooled o-terphenyl: Signature of spatially heterogeneous dynamics?
,”
J. Chem. Phys.
104
,
7210
7218
(
1996
).
87.
F.
Fujara
,
B.
Geil
,
H.
Sillescu
, and
G.
Fleischer
, “
Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition
,”
Z. Phys. B
88
,
195
204
(
1992
).
88.
D. D.
Deppe
,
A.
Dhinojwala
, and
J. M.
Torkelson
, “
Small molecule probe diffusion in thin polymer films near the glass transition: A novel approach using fluorescence nonradiative energy transfer
,”
Macromolecules
29
,
3898
3908
(
1996
).
89.
D. B.
Hall
,
A.
Dhinojwala
, and
J. M.
Torkelson
, “
Translation–rotation paradox for diffusion in glass-forming polymers: The role of the temperature dependence of the relaxation time distribution
,”
Phys. Rev. Lett.
79
,
103
(
1997
).
90.
D. B.
Hall
,
D. D.
Deppe
,
K. E.
Hamilton
,
A.
Dhinojwala
, and
J. M.
Torkelson
, “
Probe translational and rotational diffusion in polymers near Tg: Roles of probe size, shape, and secondary bonding in deviations from Debye–Stokes–Einstein scaling
,”
J. Non-Cryst. Solids
235–237
,
48
56
(
1998
).
91.
W.
Denissen
,
J. M.
Winne
, and
F. E.
Du Prez
, “
Vitrimers: Permanent organic networks with glass-like fluidity
,”
Chem. Sci.
7
,
30
38
(
2016
).
92.
J.
Huang
,
N.
Ramlawi
,
G. S.
Sheridan
,
C.
Chen
,
R. H.
Ewoldt
,
P. V.
Braun
, and
C. M.
Evans
, “
Dynamic covalent bond exchange enhances penetrant diffusion in dense vitrimers
,”
Macromolecules
56
,
1253
1262
(
2023
).
93.
J.
Huang
,
G. S.
Sheridan
,
C.
Chen
,
N.
Ramlawi
,
R. H.
Ewoldt
,
P. V.
Braun
, and
C. M.
Evans
, “
Reversible reactions, mesh size, and segmental dynamics control penetrant diffusion in ethylene vitrimers
,”
ACS Macro Lett.
12
,
901
907
(
2023
).

Supplementary Material

You do not currently have access to this content.