Anharmonicity strongly influences the absorption and emission spectra of polycyclic aromatic hydrocarbon (PAH) molecules. Here, IR–UV ion-dip spectroscopy experiments together with detailed anharmonic computations reveal the presence of fundamental, overtone, as well as 2- and 3-quanta combination band transitions in the far- and mid-infrared absorption spectra of phenylacetylene and its singly deuterated isotopologue. Strong absorption features in the 400–900 cm−1 range originate from CH(D) in-plane and out-of-plane wags and bends, as well as bending motions including the C≡C and CH bonds of the acetylene substituent and the aromatic ring. For phenylacetylene, every absorption feature is assigned either directly or indirectly to a single or multiple vibrational mode(s). The measured spectrum is dense, broad, and structureless in many regions but well characterized by computations. Upon deuteration, large isotopic shifts are observed. At frequencies above 1500 cm−1 for d1-phenylacetylene, a one-to-one match is seen when comparing computations and experiments with all features assigned to combination bands and overtones. The C≡C stretch observed in phenylacetylene is not observed in d1-phenylacetylene due to a computed 40-fold drop in intensity. Overall, a careful treatment of anharmonicity that includes 2- and 3-quanta modes is found to be crucial to understand the rich details of the infrared spectrum of phenylacetylene. Based on these results, it can be expected that such an all-inclusive anharmonic treatment will also be key for unraveling the infrared spectra of PAHs in general.

1.
A. G. G. M.
Tielens
, “
Interstellar polycyclic aromatic hydrocarbon molecules
,”
Annu. Rev. Astron. Astrophys.
46
,
289
337
(
2008
).
2.
C.
Boersma
,
L. J.
Allamandola
,
V. J.
Esposito
,
A.
Maragkoudakis
,
J. D.
Bregman
,
P.
Temi
,
T. J.
Lee
,
R. C.
Fortenberry
, and
E.
Peeters
, “
JWST: Deuterated PAHs, PAH nitriles, and PAH overtone and combination bands. I. Program description and first look
,”
Astrophys. J.
959
(
2
),
74
(
2023
).
3.
M. L.
Laury
,
M. J.
Carlson
, and
A. K.
Wilson
, “
Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets
,”
J. Comput. Chem.
33
(
30
),
2380
2387
(
2012
).
4.
S. R.
Langhoff
, “
Theoretical infrared spectra for polycyclic aromatic hydrocarbon neutrals, cations, and anions
,”
J. Phys. Chem.
100
(
8
),
2819
2841
(
1996
).
5.
C. W.
Bauschlicher
and
S. R.
Langhoff
, “
The calculation of accurate harmonic frequencies of large molecules: The polycyclic aromatic hydrocarbons, a case study
,”
Spectrochim. Acta, Part A
53
(
8
),
1225
1240
(
1997
).
6.
C. W.
Bauschlicher
,
C.
Boersma
,
A.
Ricca
,
A. L.
Mattioda
,
J.
Cami
,
E.
Peeters
,
F.
Sánchez de Armas
,
G.
Puerta Saborido
,
D. M.
Hudgins
, and
L. J.
Allamandola
, “
The NASA AMES polycyclic aromatic hydrocarbon infrared spectroscopic database: The computed spectra
,”
Astrophys. J., Suppl. Ser.
189
(
2
),
341
(
2010
).
7.
C. W.
Bauschlicher
,
A.
Ricca
,
C.
Boersma
, and
L. J.
Allamandola
, “
The NASA Ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factors
,”
Astrophys. J., Suppl. Ser.
234
(
2
),
32
(
2018
).
8.
O.
Pirali
,
M.
Vervloet
,
G.
Mulas
,
G.
Malloci
, and
C.
Joblin
, “
High-resolution infrared absorption spectroscopy of thermally excited naphthalene. Measurements and calculations of anharmonic parameters and vibrational interactions
,”
Phys. Chem. Chem. Phys.
11
(
18
),
3443
3454
(
2009
).
9.
F. M.
Behlen
,
D. B.
McDonald
,
V.
Sethuraman
, and
S. A.
Rice
, “
Fluorescence spectroscopy of cold and warm naphthalene molecules: Some new vibrational assignments
,”
J. Chem. Phys.
75
(
12
),
5685
5693
(
1981
).
10.
E.
Cané
,
P.
Palmier
,
R.
Tarroni
,
A.
Trombetti
, and
N. C.
Handy
, “
The high-resolution infrared spectra of naphthalene-h8 and naphthalene-d8: Comparison of scaled SCF and density functional force fields
,”
Gazz. Chim. Ital.
126
(
5
),
289
296
(
1996
).
11.
J. M.
Bakker
,
B.
Redlich
,
A. F. G.
Van Der Meer
, and
J.
Oomens
, “
Infrared spectroscopy of gas-phase polycyclic aromatic hydrocarbon cations in the 10–50 μm spectral range
,”
Astrophys. J.
741
(
2
),
74
(
2011
).
12.
J.
Roithová
,
J.
Jašík
,
J. J. D. P.
Mellado
, and
D.
Gerlich
, “
Electronic spectra of ions of astrochemical interest: From fast overview spectra to high resolution
,”
Faraday Discuss.
217
,
98
113
(
2019
).
13.
S. D.
Wiersma
,
A.
Candian
,
J. M.
Bakker
, and
A.
Petrignani
, “
Gas-phase spectroscopy of photostable PAH ions from the mid- to far-infrared
,”
Mon. Not. R. Astron. Soc.
516
(
4
),
5216
5226
(
2022
).
14.
A. K.
Lemmens
,
P.
Ferrari
,
D.
Loru
,
G.
Batra
,
A. L.
Steber
,
B.
Redlich
,
M.
Schnell
, and
B.
Martinez-Haya
, “
Wetting of a hydrophobic surface: Far-IR action spectroscopy and dynamics of microhydrated naphthalene
,”
J. Phys. Chem. Lett.
14
,
10794
(
2023
).
15.
V. J.
Esposito
,
L. J.
Allamandola
,
C.
Boersma
,
J. D.
Bregman
,
R. C.
Fortenberry
,
A.
Maragkoudakis
, and
P.
Temi
, “
Anharmonic IR absorption spectra of the prototypical interstellar PAHs phenanthrene, pyrene, and pentacene in their neutral and cation states
,”
Mol. Phys.
e2252936
(
2023
).
16.
V. J.
Esposito
,
P.
Ferrari
,
W. J.
Buma
,
C.
Boersma
,
C. J.
Mackie
,
A.
Candian
,
R. C.
Fortenberry
, and
A. G. G. M.
Tielens
, “
Anharmonicity and deuteration in the IR absorption and emission spectrum of phenylacetylene
,”
Mol. Phys.
e2261570
(
2023
).
17.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
W. J.
Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
, “
The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene
,”
J. Chem. Phys.
143
(
22
),
224314
(
2015
).
18.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
A. L.
Mattioda
,
W. J.
Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
, “
The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene
,”
J. Chem. Phys.
145
(
8
),
084313
(
2016
).
19.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
W.
Jan Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
, “
The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs
,”
Phys. Chem. Chem. Phys.
20
(
2
),
1189
1197
(
2018
).
20.
C. J.
Mackie
,
T.
Chen
,
A.
Candian
,
T. J.
Lee
, and
A. G. G. M.
Tielens
, “
Fully anharmonic infrared cascade spectra of polycyclic aromatic hydrocarbons
,”
J. Chem. Phys.
149
(
13
),
134302
(
2018
).
21.
C. J.
Mackie
,
A.
Candian
,
T. J.
Lee
, and
A. G. G. M.
Tielens
, “
Anharmonicity and the IR emission spectrum of neutral interstellar PAH molecules
,”
J. Phys. Chem. A
126
(
20
),
3198
3209
(
2022
).
22.
S.
Banhatti
,
D. B.
Rap
,
A.
Simon
,
H.
Leboucher
,
G.
Wenzel
,
C.
Joblin
,
B.
Redlich
,
S.
Schlemmer
, and
S.
Brünken
, “
Formation of the acenaphthylene cation as a common C2H2-loss fragment in dissociative ionization of the PAH isomers anthracene and phenanthrene
,”
Phys. Chem. Chem. Phys.
24
(
44
),
27343
27354
(
2022
).
23.
G.
Mulas
,
C.
Falvo
,
P.
Cassam-Chenaï
, and
C.
Joblin
, “
Anharmonic vibrational spectroscopy of polycyclic aromatic hydrocarbons (PAHs)
,”
J. Chem. Phys.
149
(
14
),
144102
(
2018
).
24.
R.
Chown
,
A.
Sidhu
,
E.
Peeters
,
A. G. G. M.
Tielens
,
C.
Jan
,
O.
Berne
,
E.
Habart
,
F.
Alarcon
,
A.
Canin
,
I.
Schroetter
et al, “
PDRs4AII IV. An embarrassment of riches: Aromatic infrared bands in the Orion bar
,” arXiv:2308.16733 (
2023
).
25.
E.
Maltseva
,
A.
Petrignani
,
A.
Candian
,
C. J.
Mackie
,
X.
Huang
,
T. J.
Lee
,
G.
Alexander
,
G. M.
Tielens
,
J.
Oomens
, and
W.
Jan Buma
, “
High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: The realm of anharmonicity
,”
Astrophys. J.
814
(
1
),
23
(
2015
).
26.
E.
Maltseva
,
A.
Petrignani
,
A.
Candian
,
C. J.
Mackie
,
X.
Huang
,
T. J.
Lee
,
G.
Alexander
,
G. M.
Tielens
,
J.
Oomens
, and
W.
Jan Buma
, “
High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 µm region: Role of periphery
,”
Astrophys. J.
831
(
1
),
58
(
2016
).
27.
E.
Maltseva
,
C. J.
Mackie
,
A.
Candian
,
A.
Petrignani
,
X.
Huang
,
T. J.
Lee
,
G.
Alexander
,
G. M.
Tielens
,
J.
Oomens
, and
W.
Jan Buma
, “
High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 µm region: Role of hydrogenation and alkylation
,”
Astron. Astrophys.
610
,
A65
(
2018
).
28.
A. K.
Lemmens
,
D. B.
Rap
,
J. M. M.
Thunnissen
,
C. J.
Mackie
,
A.
Candian
,
A. G. G. M.
Tielens
,
A. M.
Rijs
, and
W. J.
Buma
, “
Anharmonicity in the mid-infrared spectra of polycyclic aromatic hydrocarbons: Molecular beam spectroscopy and calculations
,”
Astron. Astrophys.
628
,
A130
(
2019
).
29.
A. K.
Lemmens
,
A. M.
Rijs
, and
W. J.
Buma
, “
Infrared spectroscopy of jet-cooled ‘GrandPAHs’ in the 3–100 μm region
,”
Astrophys. J.
923
(
2
),
238
(
2021
).
30.
D.
Loru
,
C.
Cabezas
,
J.
Cernicharo
,
M.
Schnell
, and
A. L.
Steber
, “
Detection of ethynylbenzene in TMC-1 and the interstellar search for 1,2-diethynylbenzene
,”
Astron. Astrophys.
677
,
A166
(
2023
).
31.
V.
Yatsyna
,
D. J.
Bakker
,
P.
Salén
,
R.
Feifel
,
A. M.
Rijs
, and
V.
Zhaunerchyk
, “
Infrared action spectroscopy of low-temperature neutral gas-phase molecules of arbitrary structure
,”
Phys. Rev. Lett.
117
(
11
),
118101
(
2016
).
32.
S.
Jaeqx
,
J.
Oomens
,
A.
Cimas
,
M.-P.
Gaigeot
, and
A. M.
Rijs
, “
Gas-phase peptide structures unraveled by far-IR spectroscopy: Combining IR-UV ion-dip experiments with Born–Oppenheimer molecular dynamics simulations
,”
Angew. Chem., Int. Ed.
53
(
14
),
3663
3666
(
2014
).
33.
S.
Bakels
,
M.-P.
Gaigeot
, and
A. M.
Rijs
, “
Gas-phase infrared spectroscopy of neutral peptides: Insights from the far-IR and THz domain
,”
Chem. Rev.
120
(
7
),
3233
3260
(
2020
).
34.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
(
7
),
5648
5652
(
1993
).
35.
V.
Barone
,
P.
Cimino
, and
E.
Stendardo
, “
Development and validation of the B3LYP/N07D computational model for structural parameter and magnetic tensors of large free radicals
,”
J. Chem. Theory Comput.
4
(
5
),
751
764
(
2008
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
et al, Gaussian 16,
2016
.
37.
V.
Barone
,
M.
Biczysko
, and
J.
Bloino
, “
Fully anharmonic IR and Raman spectra of medium-size molecular systems: Accuracy and interpretation
,”
Phys. Chem. Chem. Phys.
16
(
5
),
1759
1787
(
2014
).
38.
V.
Barone
, “
Anharmonic vibrational properties by a fully automated second-order perturbative approach
,”
J. Chem. Phys.
122
(
1
),
014108
(
2005
).
39.
R. C.
Fortenberry
and
T. J.
Lee
, “
Chapter six—Computational vibrational spectroscopy for the detection of molecules in space
,”
Annu. Rep. Comput. Chem.
15
,
173
202
(
2019
).
40.
P. R.
Franke
,
J. F.
Stanton
, and
G. E.
Douberly
, “
How to VPT2: Accurate and intuitive simulations of CH stretching infrared spectra using VPT2+K with large effective Hamiltonian resonance treatments
,”
J. Phys. Chem. A
125
(
6
),
1301
1324
(
2021
).
41.
J. K. G.
Watson
,
On Vibrational Spectra and Structure
(
Elsevier
,
Amsterdam
,
1977
).
42.
R. C.
Fortenberry
and
T. J.
Lee
, “
Vibrational and rovibrational spectroscopy applied to astrochemistry
,” in
Vibrational Dynamics of Molecules
(
World Scientific
,
2022
), pp.
235
295
.
43.
J. F.
Gaw
,
A.
Willets
,
W. H.
Green
, and
N. C.
Handy
, “
SPECTRO—A program for the derivation of spectrscopic constants from provided quartic force fields and cubic dipole fields
,” in
Advances in Molecular Vibrations and Collision Dynamics
, edited by
J. M.
Bowman
and
M. A.
Ratner
(
JAI Press, Inc.
,
Greenwich, CT
,
1991
), pp.
170
185
.
44.
J. M. L.
Martin
and
P. R.
Taylor
, “
Accurate ab initio quartic force field for trans-HNNH and treatment of resonance polyads
,”
Spectrochim. Acta, Part A
53
(
8
),
1039
1050
(
1997
).
45.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J. P.
François
, “
The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations
,”
J. Chem. Phys.
103
(
7
),
2589
2602
(
1995
).
46.
T. J.
Lee
and
R. C.
Fortenberry
, “
The unsolved issue with out-of-plane bending frequencies for C=C multiply bonded systems
,”
Spectrochim. Acta, Part A
248
,
119148
(
2021
).
47.
R. C.
Fortenberry
,
T. J.
Lee
, and
H. S. P.
Müller
, “
Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions
,”
Mol. Astrophys.
1
,
13
19
(
2015
).
48.
E.
Peeters
,
S.
Hony
,
C.
Van Kerckhoven
,
A. G. G. M.
Tielens
,
L. J.
Allamandola
,
D. M.
Hudgins
, and
C. W.
Bauschlicher
, “
The rich 6 to 9 μm spectrum of interstellar PAHs
,”
Astron. Astrophys.
390
(
3
),
1089
1113
(
2002
).
49.
O.
Lacinbala
,
G.
Féraud
,
J.
Vincent
, and
T.
Pino
, “
Aromatic and acetylenic C–H or C–D stretching bands anharmonicity detection of phenylacetylene by UV laser-induced vibrational emission
,”
J. Phys. Chem. A
126
(
30
),
4891
4901
(
2022
).

Supplementary Material

You do not currently have access to this content.