To simulate a 200 nm photoexcitation in cyclobutanone to the n-3s Rydberg state, classical trajectories were excited from a Wigner distribution to the singlet state manifold based on excitation energies and oscillator strengths. Twelve singlet and 12 triplet states are treated using TD-B3LYP-D3/6-31+G** for the electronic structure, and the nuclei are propagated with the Tully surface hopping method. Using time-dependent density functional theory, we are able to predict the bond cleavage that takes place on the S1 surface as well as the ultrafast deactivation from the Rydberg n-3s state to the nπ*. After showing that triplet states and higher-lying singlet states do not play any crucial role during the early dynamics (i.e., the first 300 fs), the SA(6)-CASSCF(8,11)/aug-cc-pVDZ method is used as an electronic structure and the outcome of the non-adiabatic dynamic simulations is recomputed. Gas-phase ultrafast electron diffraction spectra are computed for both electronic structure methods, showing significantly different results.

1.
W.
Domcke
and
D. R.
Yarkony
, “
Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics
,”
Annu. Rev. Phys. Chem.
63
,
325
352
(
2012
).
2.
R. C.
Evans
,
P.
Douglas
, and
H. D.
Burrow
,
Applied Photochemistry
(
Springer
,
2013
), Vol.
36
.
3.
S.
Mai
and
L.
Gonzalez
, “
Molecular photochemistry: Recent developments in theory
,”
Angew. Chem., Int. Ed.
59
,
16832
16846
(
2020
).
4.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
, “
Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials
,”
Chem. Rev.
120
,
2215
2287
(
2020
).
5.
D. R.
Morton
,
E.
Lee-Ruff
,
R. M.
Southam
, and
N. J.
Turro
, “
Molecular photochemistry. XXVII. Photochemical ring expansion of cyclobutanone, substituted cyclobutanones, and related cyclic ketones
,”
J. Am. Chem. Soc.
92
,
4349
4357
(
1970
).
6.
G.
Umbricht
,
M. D.
Hellman
, and
L. S.
Hegedus
, “
Photochemical ring expansion of α-alkoxycyclobutanones to 2-acetoxy-5-alkoxytetrahydrofurans: Nucleophilic reactions at the 2-position
,”
J. Org. Chem.
63
,
5173
5178
(
1998
).
7.
B. T.
Hue
,
J.
Dijkink
,
S.
Kuiper
,
K. K.
Larson
,
F. S.
Guziec Jr
,
K.
Goubitz
,
J.
Fraanje
,
H.
Schenk
,
J. H.
van Maarseveen
, and
H.
Hiemstra
, “
Synthesis of the cyclobutanone core of solanoeclepin a via intramolecular allene butenolide photocycloaddition
,”
Org. Biomol. Chem.
1
,
4364
4366
(
2003
).
8.
M. D.
Kärkäs
,
J. A. J.
Porco
, and
C. R. J.
Stephenson
, “
Photochemical approaches to complex chemotypes: Applications in natural product synthesis
,”
Chem. Rev.
116
,
9683
9747
(
2016
).
9.
M.
Zanini
,
A.
Cataffo
, and
A. M.
Echavarren
, “
Synthesis of cyclobutanones by gold(I)-catalyzed [2 + 2] cycloaddition of ynol ethers with alkenes
,”
Org. Lett.
23
,
8989
8993
(
2021
).
10.
T. I.
Solling
, “
Nonstatistical photoinduced processes in gaseous organic molecules
,”
ACS Omega
6
,
29325
29344
(
2021
).
11.
N. J.
Turro
,
J. C.
Dalton
,
K.
Dawes
,
G.
Farrington
,
R.
Hautala
,
D.
Morton
,
M.
Niemczyk
, and
N.
Schore
, “
Molecular photochemistry. L. Molecular photochemistry of alkanones in solution: α-cleavage, hydrogen abstraction, cycloaddition, and sensitization reactions
,”
Acc. Chem. Res.
5
,
92
101
(
1972
).
12.
E. K.
Lee
, “
Laser photochemistry of selected vibronic and rotational states
,”
Acc. Chem. Res.
10
,
319
326
(
1977
).
13.
S.
Benson
and
G.
Kistiakowsky
, “
The photochemical decomposition of cyclic ketones
,”
J. Am. Chem. Soc.
64
,
80
86
(
1942
).
14.
R. F.
Whitlock
and
A. B. F.
Duncan
, “
Electronic spectrum of cyclobutanone
,”
J. Chem. Phys.
55
,
218
(
1971
).
15.
E. K.
Lee
,
R. G.
Shortridge
, Jr.
, and
C. F.
Rusbult
, “
Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase
,”
J. Am. Chem. Soc.
93
,
1863
1867
(
1971
).
16.
J. C.
Hemminger
and
E. K. C.
Lee
, “
Fluorescence excitation and photodecomposition of the first excited singlet cyclobutanone (1A2): A study of predissociation of and collisional energy transfer from the vibronically selected species
,”
J. Chem. Phys.
56
,
5284
(
1972
).
17.
C.
Drury-Lessard
and
D.
Moule
, “
Ring puckering in the 1B2 (n,3s) Rydberg electronic state of cyclobutanone
,”
J. Chem. Phys.
68
,
5392
5395
(
1978
).
18.
M.
Baba
and
I.
Hanazaki
, “
The S1(n,π*) states of cyclopentanone and cyclobutanone in a supersonic nozzle beam
,”
J. Chem. Phys.
81
,
5426
5433
(
1984
).
19.
L.
O’Toole
,
P.
Brint
,
C.
Kosmidis
,
G.
Boulakis
, and
P.
Tsekeris
, “
Vacuum-ultraviolet absorption spectra of propanone, butanone and the cyclic ketones CnH2n−2O (n= 4, 5, 6, 7)
,”
J. Chem. Soc., Faraday Trans.
87
,
3343
3351
(
1991
).
20.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
, “
Femtochemistry of Norrish type-I reactions: II. The anomalous predissociation dynamics of cyclobutanone on the S1 surface
,”
ChemPhysChem
2
,
294
309
(
2001
).
21.
T. S.
Kuhlman
,
S.
Sauer
,
T. I.
Sølling
, and
K. B.
Møller
, “
Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones
,”
J. Chem. Phys.
137
,
22A522
(
2012
).
22.
S.-H.
Xia
,
X.-Y.
Liu
,
Q.
Fang
, and
G.
Cui
, “
Excited-state ring-opening mechanism of cyclic ketones: A MS-CASPT2//CASSCF study
,”
J. Phys. Chem. A
119
,
3569
3576
(
2015
).
23.
L.
Liu
and
W.-H.
Fang
, “
New insights into photodissociation dynamics of cyclobutanone from the AIMS dynamic simulation
,”
J. Chem. Phys.
144
,
144317
(
2016
).
24.
M.
Larsen
,
A.
Stephansen
, and
T.
Sølling
, “
Coherent motion of excited state cyclic ketones: The have and the have-nots
,”
Chem. Phys. Lett.
683
,
495
499
(
2017
).
25.
M.-H.
Kao
,
R. K.
Venkatraman
,
M. N. R.
Ashfold
, and
A. J.
Orr-Ewing
, “
Effects of ring-strain on the ultrafast photochemistry of cyclic ketones
,”
Chem. Sci.
11
,
1991
2000
(
2020
).
26.
T. S.
Kuhlman
,
T. I.
Sølling
, and
K. B.
Møller
, “
“Coherent motion reveals non-ergodic nature of internal conversion between excited states
,”
ChemPhysChem
13
,
820
827
(
2012
).
27.
M.
Centurion
,
T. J.
Wolf
, and
J.
Yang
, “
Ultrafast imaging of molecules with electron diffraction
,”
Annu. Rev. Phys. Chem.
73
,
21
42
(
2022
).
28.
R. E.
Blankenship
,
D. M.
Tiede
,
J.
Barber
,
G. W.
Brudvig
,
G.
Fleming
,
M.
Ghirardi
,
M.
Gunner
,
W.
Junge
,
D. M.
Kramer
,
A.
Melis
et al, “
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
,”
Science
332
,
805
809
(
2011
).
29.
M.
Staniforth
,
W.-D.
Quan
,
T. N.
Karsili
,
L. A.
Baker
,
R. K.
O’Reilly
, and
V. G.
Stavros
, “
First step toward a universal fluorescent probe: Unravelling the photodynamics of an amino–maleimide fluorophore
,”
J. Phys. Chem. A
121
,
6357
6365
(
2017
).
30.
G.
Simone
,
M. J.
Dyson
,
S. C.
Meskers
,
R. A.
Janssen
, and
G. H.
Gelinck
, “
Organic photodetectors and their application in large area and flexible image sensors: The role of dark current
,”
Adv. Funct. Mater.
30
,
1904205
(
2020
).
31.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, “
Multimode molecular dynamics beyond the Born-Oppenheimer approximation
,”
Adv. Chem. Phys.
57
,
59
246
(
1984
).
32.
G. A.
Worth
and
L. S.
Cederbaum
, “
Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection
,”
Annu. Rev. Phys. Chem.
55
,
127
158
(
2004
).
33.
J. P.
Zobel
,
M.
Heindl
,
F.
Plasser
,
S.
Mai
, and
L.
González
, “
Surface hopping dynamics on vibronic coupling models
,”
Acc. Chem. Res.
54
,
3760
3771
(
2021
).
34.
T. J.
Penfold
and
J.
Eng
, “
Mind the GAP: Quantifying the breakdown of the linear vibronic coupling Hamiltonian
,”
Phys. Chem. Chem. Phys.
25
,
7195
7204
(
2023
).
35.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
, “
Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+g basis set for first-row elements, Li-F
,”
J. Comput. Chem.
4
,
294
301
(
1983
).
36.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
37.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
38.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
8433
(
2004
).
39.
N. T.
Maitra
, “
Perspective: Fundamental aspects of time-dependent density functional theory
,”
J. Chem. Phys.
144
,
220901
(
2016
).
40.
D. J.
Tozer
and
N. C.
Handy
, “
On the determination of excitation energies using density functional theory
,”
Phys. Chem. Chem. Phys.
2
,
2117
2121
(
2000
).
41.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
42.
I.
Seidu
,
M.
Krykunov
, and
T.
Ziegler
, “
Applications of time-dependent and time-independent density functional theory to Rydberg transitions
,”
J. Phys. Chem. A
119
,
5107
5116
(
2015
).
43.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
44.
F.
Neese
, “
Software update: The ORCA program system-Version 5.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1606
(
2022
).
45.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).
46.
J. T.
Taylor
,
D. J.
Tozer
, and
B. F. E.
Curchod
, “
On the description of conical intersections between excited electronic states with LR-TDDFT and ADC(2)
,”
J. Chem. Phys.
159
,
214115
(
2023
).
47.
E.
Tapavicza
,
I.
Tavernelli
,
U.
Rothlisberger
,
C.
Filippi
, and
M. E.
Casida
, “
Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry
,”
J. Chem. Phys.
129
,
124108
(
2008
).
48.
F.
Aquilante
,
J.
Autschbach
,
A.
Baiardi
,
S.
Battaglia
,
V. A.
Borin
,
L. F.
Chibotaru
,
I.
Conti
,
L.
De Vico
,
M.
Delcey
,
I.
Fdez Galván
et al, “
Modern quantum chemistry with [Open]Molcas
,”
J. Chem. Phys.
152
,
214117
(
2020
).
49.
G.
Li Manni
,
I. F.
Galván
,
A.
Alavi
,
F.
Aleotti
,
F.
Aquilante
,
J.
Autschbach
,
D.
Avagliano
,
A.
Baiardi
,
J. J.
Bao
,
S.
Battaglia
et al, “
The OpenMolcas web: A community-driven approach to advancing computational chemistry
,”
J. Chem. Theory Comput.
19
,
6857
7434
(
2023
).
50.
B. O.
Roos
,
P. R.
Taylor
, and
P. E.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
51.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
52.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
53.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
54.
N.
Forsberg
and
P.-Å.
Malmqvist
, “
Multiconfiguration perturbation theory with imaginary level shift
,”
Chem. Phys. Lett.
274
,
196
204
(
1997
).
55.
J. C.
Tully
and
R. K.
Preston
, “
Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2
,”
J. Chem. Phys.
55
,
562
572
(
1971
).
56.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
(
1990
).
57.
L.
Verlet
, “
Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
58.
S.
Mai
,
P.
Marquetand
, and
L.
González
, “
A general method to describe intersystem crossing dynamics in trajectory surface hopping
,”
Int. J. Quantum Chem.
115
,
1215
1231
(
2015
).
59.
G.
Granucci
and
M.
Persico
, “
Critical appraisal of the fewest switches algorithm for surface hopping
,”
J. Chem. Phys.
126
,
134114
(
2007
).
60.
G.
Granucci
,
M.
Persico
, and
A.
Zoccante
, “
Including quantum decoherence in surface hopping
,”
J. Chem. Phys.
133
,
134111
(
2010
).
61.
G.
Granucci
,
M.
Persico
, and
A.
Toniolo
, “
Direct semiclassical simulation of photochemical processes with semiempirical wave functions
,”
J. Chem. Phys.
114
,
10608
10615
(
2001
).
62.
F.
Plasser
,
M.
Ruckenbauer
,
S.
Mai
,
M.
Oppel
,
P.
Marquetand
, and
L.
González
, “
Efficient and flexible computation of many-electron wave function overlaps
,”
J. Chem. Theory Comput.
12
,
1207
1219
(
2016
).
63.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
,
4597
4610
(
1993
).
64.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
, “
Relativistic total energy using regular approximations
,”
J. Chem. Phys.
101
,
9783
9792
(
1994
).
65.
E.
van Lenthe
,
J.
Snijders
, and
E.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
66.
F.
Salvat
,
A.
Jablonski
, and
C. J.
Powell
, “
ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules
,”
Comput. Phys. Commun.
165
,
157
190
(
2005
).
67.
J. P.
Figueira Nunes
,
L. M.
Ibele
,
S.
Pathak
,
A. R.
Attar
,
S.
Bhattacharyya
,
R.
Boll
,
K.
Borne
,
M.
Centurion
,
B.
Erk
,
M.-F.
Lin
et al, “
Monitoring the evolution of relative product populations at early times during a photochemical0 reaction
,”
J. Am. Chem. Soc.
6
, 1 (2024).
68.
J.
Hemminger
,
H. A.
Carless
, and
E. K.
Lee
, “
Laser-excited fluorescence emission from cis and trans isomers of 2,3- and 2,4-dimethylcyclobutanone. Ultra-short-lived excited molecules
,”
J. Am. Chem. Soc.
95
,
682
685
(
1973
).
69.
R.
Crespo-Otero
and
M.
Barbatti
, “
Spectrum simulation and decomposition with nuclear ensemble: Formal derivation and application to benzene, furan and 2-phenylfuran
,”
Theor. Chem. Acc.
131
,
1237
(
2012
).

Supplementary Material

You do not currently have access to this content.