We present a detailed computational study on the temperature effect of the dynamics and the interfacial width of unentangled cis-1,4 polybutadiene linear chains confined between strongly attractive alumina layers via long, several μs, atomistic molecular dynamics simulations for a wide range of temperatures (143–473 K). We examine the spatial gradient of the translational segmental dynamics and of an effective local glass temperature (TgL). The latter is found to be much higher than the bulk Tg for the adsorbed layer. It gradually reduces to the bulk Tg at about 2 nm away from the substrate. For distant regions (more than 1.2nm), a bulk-like behavior is observed; relaxation times follow a typical Vogel–Fulcher–Tammann dependence for temperatures higher than Tg and an Arrhenius dependence for temperatures below the bulk Tg. On the contrary, the polymer chains at the vicinity of the substrate follow piecewise Arrhenius processes. For temperatures below about the adsorbed layer’s TgL, the translational dynamics follows a bulk-like (same activation energy) Arrhenius process. At higher temperatures, there is a low activation energy Arrhenius process, caused by high interfacial friction forces. Finally, we compute the interfacial width, based on both structural and dynamical definitions, as a function of temperature. The absolute value of the interfacial width depends on the actual definition, but, regardless, the qualitative behavior is consistent. The interfacial width peaks around the bulk Tg and contracts for lower and higher temperatures. At bulk Tg, the estimated length of the interfacial width, computed via the various definitions, ranges between 1.0 and 2.7 nm.

1.
R. A.
Jones
and
R. W.
Richards
,
Polymers at Surfaces and Interfaces
(
Cambridge University Press
,
1999
).
2.
G.
Fleer
,
M. C.
Stuart
,
J. M.
Scheutjens
,
T.
Cosgrove
, and
B.
Vincent
,
Polymers at Interfaces
(
Springer Science and Business Media
,
1993
).
3.
M. A.
Kashfipour
,
N.
Mehra
, and
J.
Zhu
, “
A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites
,”
Adv. Compos. Hybrid Mater.
1
,
415
439
(
2018
).
4.
K.
Johnston
and
V.
Harmandaris
, “
Hierarchical multiscale modeling of polymer–solid interfaces: Atomistic to coarse-grained description and structural and conformational properties of polystyrene–gold systems
,”
Macromolecules
46
,
5741
5750
(
2013
).
5.
J.-L.
Barrat
,
J.
Baschnagel
, and
A.
Lyulin
, “
Molecular dynamics simulations of glassy polymers
,”
Soft Matter
6
,
3430
3446
(
2010
).
6.
G.
Luengo
,
F.-J.
Schmitt
,
R.
Hill
, and
J.
Israelachvili
, “
Thin film rheology and tribology of confined polymer melts: Contrasts with bulk properties
,”
Macromolecules
30
,
2482
2494
(
1997
).
7.
K. S.
Schweizer
and
D. S.
Simmons
, “
Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement
,”
J. Chem. Phys.
151
,
240901
(
2019
).
8.
R. D.
Priestley
,
D.
Cangialosi
, and
S.
Napolitano
, “
On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers
,”
J. Non-Cryst. Solids
407
,
288
295
(
2015
).
9.
S.
Napolitano
,
E.
Glynos
, and
N. B.
Tito
, “
Glass transition of polymers in bulk, confined geometries, and near interfaces
,”
Rep. Prog. Phys.
80
,
036602
(
2017
).
10.
S.
Alexandris
,
G.
Sakellariou
,
M.
Steinhart
, and
G.
Floudas
, “
Dynamics of unentangled cis-1,4-polyisoprene confined to nanoporous alumina
,”
Macromolecules
47
,
3895
3900
(
2014
).
11.
F.
Lange
,
P.
Judeinstein
,
C.
Franz
,
B.
Hartmann-Azanza
,
S.
Ok
,
M.
Steinhart
, and
K.
Saalwächter
, “
Large-scale diffusion of entangled polymers along nanochannels
,”
ACS Macro Lett.
4
,
561
565
(
2015
).
12.
S.
Alexandris
,
P.
Papadopoulos
,
G.
Sakellariou
,
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
, “
Interfacial energy and glass temperature of polymers confined to nanoporous alumina
,”
Macromolecules
49
,
7400
7414
(
2016
).
13.
C.
Politidis
,
S.
Alexandris
,
G.
Sakellariou
,
M.
Steinhart
, and
G.
Floudas
, “
Dynamics of entangled cis-1,4-polyisoprene confined to nanoporous alumina
,”
Macromolecules
52
,
4185
4195
(
2019
).
14.
C.-H.
Tu
,
J.
Zhou
,
M.
Doi
,
H.-J.
Butt
, and
G.
Floudas
, “
Interfacial interactions during in situ polymer imbibition in nanopores
,”
Phys. Rev. Lett.
125
,
127802
(
2020
).
15.
C.-H.
Tu
,
J.
Zhou
,
H.-J.
Butt
, and
G.
Floudas
, “
Adsorption kinetics of cis-1,4-polyisoprene in nanopores by in situ nanodielectric spectroscopy
,”
Macromolecules
54
,
6267
6274
(
2021
).
16.
G.
Liu
,
A. J.
Muller
, and
D.
Wang
, “
Confined crystallization of polymers within nanopores
,”
Acc. Chem. Res.
54
,
3028
3038
(
2021
).
17.
P.
Kardasis
,
G.
Sakellariou
,
M.
Steinhart
, and
G.
Floudas
, “
Non-equilibrium effects of polymer dynamics under nanometer confinement: Effects of architecture and molar mass
,”
J. Phys. Chem. B
126
,
5570
5581
(
2022
).
18.
M.
Tarnacka
,
K.
Kaminski
,
E. U.
Mapesa
,
E.
Kaminska
, and
M.
Paluch
, “
Studies on the temperature and time induced variation in the segmental and chain dynamics in poly(propylene glycol) confined at the nanoscale
,”
Macromolecules
49
,
6678
6686
(
2016
).
19.
S. Y.
Kim
,
H. W.
Meyer
,
K.
Saalwächter
, and
C. F.
Zukoski
, “
Polymer dynamics in PEG-silica nanocomposites: Effects of polymer molecular weight, temperature and solvent dilution
,”
Macromolecules
45
,
4225
4237
(
2012
).
20.
S. E.
Harton
,
S. K.
Kumar
,
H.
Yang
,
T.
Koga
,
K.
Hicks
,
H.
Lee
,
J.
Mijovic
,
M.
Liu
,
R. S.
Vallery
, and
D. W.
Gidley
, “
Immobilized polymer layers on spherical nanoparticles
,”
Macromolecules
43
,
3415
3421
(
2010
).
21.
J.
Berriot
,
F.
Lequeux
,
L.
Monnerie
,
H.
Montes
,
D.
Long
, and
P.
Sotta
, “
Filler–elastomer interaction in model filled rubbers, a 1H NMR study
,”
J. Non-Cryst. Solids
307–310
,
719
724
(
2002
).
22.
Y.
Golitsyn
,
G. J.
Schneider
, and
K.
Saalwächter
, “
Reduced-mobility layers with high internal mobility in poly(ethylene oxide)–silica nanocomposites
,”
J. Chem. Phys.
146
,
203303
(
2017
).
23.
S.
Cheng
,
V.
Bocharova
,
A.
Belianinov
,
S.
Xiong
,
A.
Kisliuk
,
S.
Somnath
,
A. P.
Holt
,
O. S.
Ovchinnikova
,
S.
Jesse
,
H.
Martin
et al, “
Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites
,”
Nano Lett.
16
,
3630
3637
(
2016
).
24.
C.
Rotella
,
M.
Wübbenhorst
, and
S.
Napolitano
, “
Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition
,”
Soft Matter
7
,
5260
5266
(
2011
).
25.
S.
Napolitano
,
C.
Rotella
, and
M.
Wubbenhorst
, “
Can thickness and interfacial interactions univocally determine the behavior of polymers confined at the nanoscale?
,”
ACS Macro Lett.
1
,
1189
1193
(
2012
).
26.
Z.
Song
,
C.
Rodríguez-Tinoco
,
A.
Mathew
, and
S.
Napolitano
, “
Fast equilibration mechanisms in disordered materials mediated by slow liquid dynamics
,”
Sci. Adv.
8
,
eabm7154
(
2022
).
27.
B.
Wang
,
M.
Sanviti
,
A.
Alegría
, and
S.
Napolitano
, “
Molecular mobility of polymers at the melting transition
,”
ACS Macro Lett.
12
,
389
394
(
2023
).
28.
F.
Caporaletti
and
S.
Napolitano
, “
The slow Arrhenius process in small organic molecules
,”
Phys. Chem. Chem. Phys.
26
,
745
748
(
2024
).
29.
E.
Thoms
and
S.
Napolitano
, “
Enthalpy-entropy compensation in the slow Arrhenius process
,”
J. Chem. Phys.
159
,
161103
(
2023
).
30.
M.
Solar
and
W.
Paul
, “
Dipolar correlations in 1,4-polybutadiene across the timescales: A numerical molecular dynamics simulation investigation
,” in
The Scaling of Relaxation Processes
(
Springer
,
2018
), pp.
353
374
.
31.
M.
Solar
and
W.
Paul
, “
Chain relaxation in thin polymer films: Turning a dielectric type-B polymer into a type-A′ one
,”
Soft Matter
13
,
1646
1653
(
2017
).
32.
M.
Solar
,
L.
Yelash
,
P.
Virnau
,
K.
Binder
, and
W.
Paul
, “
Polymer dynamics in a polymer-solid interphase: Molecular dynamics simulations of 1,4-polybutadiene at a graphite surface
,”
Soft Mater.
12
,
S80
S89
(
2014
).
33.
E. U.
Mapesa
,
N.
Shahidi
,
F.
Kremer
,
M.
Doxastakis
, and
J.
Sangoro
, “
Interfacial dynamics in supported ultrathin polymer films—From the solid to the free interface
,”
J. Phys. Chem. Lett.
12
,
117
125
(
2020
).
34.
P.
Bačová
,
W.
Li
,
A. F.
Behbahani
,
C.
Burkhart
,
P.
Polińska
,
M.
Doxastakis
, and
V.
Harmandaris
, “
Coupling between polymer conformations and dynamics near amorphous silica surfaces: A direct insight from atomistic simulations
,”
Nanomaterials
11
,
2075
(
2021
).
35.
A. F.
Behbahani
,
A.
Rissanou
,
G.
Kritikos
,
M.
Doxastakis
,
C.
Burkhart
,
P.
Polińska
, and
V. A.
Harmandaris
, “
Conformations and dynamics of polymer chains in cis and trans polybutadiene/silica nanocomposites through atomistic simulations: From the unentangled to the entangled regime
,”
Macromolecules
53
,
6173
6189
(
2020
).
36.
G.
Kritikos
,
A. N.
Rissanou
,
V.
Harmandaris
, and
K.
Karatasos
, “
Bound layer polymer behavior on graphene and graphene oxide nanosheets
,”
Macromolecules
53
,
6190
6203
(
2020
).
37.
M.
Solar
,
K.
Binder
, and
W.
Paul
, “
Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls
,”
J. Chem. Phys.
146
,
203308
(
2017
).
38.
A. N.
Rissanou
,
H.
Papananou
,
V. S.
Petrakis
,
M.
Doxastakis
,
K. S.
Andrikopoulos
,
G. A.
Voyiatzis
,
K.
Chrissopoulou
,
V.
Harmandaris
, and
S. H.
Anastasiadis
, “
Structural and conformational properties of poly(ethylene oxide)/silica nanocomposites: Effect of confinement
,”
Macromolecules
50
,
6273
6284
(
2017
).
39.
I.
Tanis
,
A. J.
Power
,
A.
Chazirakis
, and
V. A.
Harmandaris
, “
Heterogeneous glass transition behavior of poly(ethylene oxide)/silica nanocomposites via atomistic MD simulations
,”
Macromolecules
56
,
5482
5489
(
2023
).
40.
N.
Patsalidis
,
G.
Papamokos
,
G.
Floudas
, and
V.
Harmandaris
, “
Structure and dynamics of a polybutadiene melt confined between alumina substrates
,”
Macromolecules
56
,
6552
(
2023
).
41.
L.
Yelash
,
P.
Virnau
,
K.
Binder
, and
W.
Paul
, “
Slow process in confined polymer melts: Layer exchange dynamics at a polymer solid interface
,”
Phys. Rev. E
82
,
050801
(
2010
).
42.
A.
Singh
and
D.
Kumar
, “
Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations
,”
J. Mol. Model.
24
,
178
(
2018
).
43.
L.
Yelash
,
P.
Virnau
,
K.
Binder
, and
W.
Paul
, “
Three-step decay of time correlations at polymer-solid interfaces
,”
Europhys. Lett.
98
,
28006
(
2012
).
44.
W.
Li
,
P.
Bacova
,
A. F.
Behbahani
,
C.
Burkhart
,
P.
Polinska
,
V.
Harmandaris
, and
M.
Doxastakis
, “
Tailoring interfacial properties in polymer–silica nanocomposites via surface modification: An atomistic simulation study
,”
ACS Appl. Polym. Mater.
3
,
2576
2587
(
2021
).
45.
L.
Tannoury
,
M.
Solar
, and
W.
Paul
, “
Structure and dynamics of a 1,4-polybutadiene melt in an alumina nanopore: A molecular dynamics simulation
,”
J. Chem. Phys.
157
,
124901
(
2022
).
46.
M.
Vogel
, “
Rotational and conformational dynamics of a model polymer melt at solid interfaces
,”
Macromolecules
42
,
9498
9505
(
2009
).
47.
N.
Patsalidis
,
G.
Papamokos
,
G.
Floudas
, and
V.
Harmandaris
, “
Understanding the interaction between polybutadiene and alumina via density functional theory calculations and machine-learned atomistic simulations
,”
J. Phys. Chem. C
126
,
16792
16803
(
2022
).
48.
M.
Solar
,
E.
Mapesa
,
F.
Kremer
,
K.
Binder
, and
W.
Paul
, “
The dielectric α-relaxation in polymer films: A comparison between experiments and atomistic simulations
,”
Europhys. Lett.
104
,
66004
(
2014
).
49.
A.
Lyulin
,
B.
Vorselaars
,
M.
Mazo
,
N.
Balabaev
, and
M.
Michels
, “
Strain softening and hardening of amorphous polymers: Atomistic simulation of bulk mechanics and local dynamics
,”
Europhys. Lett.
71
,
618
(
2005
).
50.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
51.
F.
Varnik
,
J.
Baschnagel
, and
K.
Binder
, “
Reduction of the glass transition temperature in polymer films: A molecular-dynamics study
,”
Phys. Rev. E
65
,
021507
(
2002
).
52.
S.
Peter
,
H.
Meyer
, and
J.
Baschnagel
, “
Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface
,”
J. Polym. Sci., Part B: Polym. Phys.
44
,
2951
2967
(
2006
).
53.
R.
Everaers
,
H. A.
Karimi-Varzaneh
,
F.
Fleck
,
N.
Hojdis
, and
C.
Svaneborg
, “
Kremer–Grest models for commodity polymer melts: Linking theory, experiment, and simulation at the Kuhn scale
,”
Macromolecules
53
,
1901
1916
(
2020
).
54.
T.
Aoyagi
,
J.-i.
Takimoto
, and
M.
Doi
, “
Molecular dynamics study of polymer melt confined between walls
,”
J. Chem. Phys.
115
,
552
559
(
2001
).
55.
C.
Batistakis
,
A. V.
Lyulin
, and
M.
Michels
, “
Slowing down versus acceleration in the dynamics of confined polymer films
,”
Macromolecules
45
,
7282
7292
(
2012
).
56.
W.
Zhang
,
H.
Emamy
,
B. A.
Pazmiño Betancourt
,
F.
Vargas-Lara
,
F. W.
Starr
, and
J. F.
Douglas
, “
The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites
,”
J. Chem. Phys.
151
,
124705
(
2019
).
57.
W.
Zhang
,
F. W.
Starr
, and
J. F.
Douglas
, “
Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films
,”
J. Chem. Phys.
152
,
124703
(
2020
).
58.
W.
Zhang
,
J. F.
Douglas
, and
F. W.
Starr
, “
Effects of a ‘bound’ substrate layer on the dynamics of supported polymer films
,”
J. Chem. Phys.
147
,
044901
(
2017
).
59.
F. W.
Starr
,
J. F.
Douglas
,
D.
Meng
, and
S. K.
Kumar
, “
Bound layers ‘cloak’ nanoparticles in strongly interacting polymer nanocomposites
,”
ACS Nano
10
,
10960
10965
(
2016
).
60.
S.
Mirigian
and
K. S.
Schweizer
, “
Influence of chemistry, interfacial width, and non-isothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films
,”
J. Chem. Phys.
146
,
203301
(
2017
).
61.
F.
Demydiuk
,
M.
Solar
,
H.
Meyer
,
O.
Benzerara
,
W.
Paul
, and
J.
Baschnagel
, “
Role of torsional potential in chain conformation, thermodynamics, and glass formation of simulated polybutadiene melts
,”
J. Chem. Phys.
156
,
234902
(
2022
).
62.
F.
Demydiuk
, “
Interfacial mobility in glass forming polymer films: Is it determined by collective motion or intramolecular energetics?
,” Ph.D. thesis,
Université de Strasbourg Martin-Luther-Universität Halle-Wittenberg
,
2021
.
63.
A. F.
Behbahani
,
S. M.
Vaez Allaei
,
G. H.
Motlagh
,
H.
Eslami
, and
V. A.
Harmandaris
, “
Structure, dynamics, and apparent glass transition of stereoregular poly(methyl methacrylate)/graphene interfaces through atomistic simulations
,”
Macromolecules
51
,
7518
7532
(
2018
).
64.
B.
Frick
,
D.
Richter
,
W.
Petry
, and
U.
Buchenau
, “
Study of the glass transition order parameter in amorphous polybutadiene by incoherent neutron scattering
,”
Z. Phys. B: Condens. Matter
70
,
73
79
(
1988
).
65.
J.
Mark
,
Polymer Data Handbook
(
Oxford University Press
,
New York
,
1999
), p.
363
.
66.
G. D.
Smith
and
W.
Paul
, “
United atom force field for molecular dynamics simulations of 1,4-polybutadiene based on quantum chemistry calculations on model molecules
,”
J. Phys. Chem. A
102
,
1200
1208
(
1998
).
67.
G. D.
Smith
,
O.
Borodin
, and
W.
Paul
, “
A molecular-dynamics simulation study of dielectric relaxation in a 1,4-polybutadiene melt
,”
J. Chem. Phys.
117
,
10350
10359
(
2002
).
68.
R. T.
Cygan
,
J.-J.
Liang
, and
A. G.
Kalinichev
, “
Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field
,”
J. Phys. Chem. B
108
,
1255
1266
(
2004
).
69.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
70.
H. J.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
71.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
72.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
73.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
74.
K.
Binder
,
J.
Baschnagel
, and
W.
Paul
, “
Glass transition of polymer melts: Test of theoretical concepts by computer simulation
,”
Prog. Polym. Sci.
28
,
115
172
(
2003
).
75.
G.
Tsolou
,
V. A.
Harmandaris
, and
V. G.
Mavrantzas
, “
Temperature and pressure effects on local structure and chain packing in cis-1,4-polybutadiene from detailed molecular dynamics simulations
,”
Macromol. Theory Simul.
15
,
381
393
(
2006
).
76.
S. W.
Provencher
, “
CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
,”
Comput. Phys. Commun.
27
,
229
242
(
1982
).
77.
R. N.
Andrews
,
S.
Narayanan
,
F.
Zhang
,
I.
Kuzmenko
, and
J.
Ilavsky
, “
CONTIN XPCS: Software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics
,”
J. Appl. Crystallogr.
51
,
205
209
(
2018
).
78.
G.
Wahnström
, “
Dynamic susceptibility in a supercooled liquid: A molecular dynamics study
,”
J. Non-Cryst. Solids
131–133
,
109
112
(
1991
).
79.
J.
Colmenero
,
A.
Arbe
, and
A.
Alegria
, “
The dynamics of the α- and β-relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy
,”
J. Non-Cryst. Solids
172–174
,
126
137
(
1994
).
80.
J.
Colmenero
,
F.
Alvarez
,
Y.
Khairy
, and
A.
Arbe
, “
Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene
,”
J. Chem. Phys.
139
,
044906
(
2013
).
81.
R.
Ghanta
,
C.
Burkhart
,
P.
Polińska
,
V.
Harmandaris
, and
M.
Doxastakis
, “
The effect of chemical constitution on polyisoprene dynamics
,”
J. Chem. Phys.
159
,
044902
(
2023
).
82.
K.
Johnston
and
V.
Harmandaris
, “
Hierarchical simulations of hybrid polymer–solid materials
,”
Soft Matter
9
,
6696
6710
(
2013
).
83.
G.
Laurens
,
D.
Amans
,
J.
Lam
, and
A.-R.
Allouche
, “
Comparison of aluminum oxide empirical potentials from cluster to nanoparticle
,”
Phys. Rev. B
101
,
045427
(
2020
).

Supplementary Material

You do not currently have access to this content.