A Belousov–Zhabotinsky (BZ) gel is a unique biomimetic system that undergoes autonomous volume oscillations induced by the redox oscillation of the BZ reaction. In a previous study, researchers reported that the oscillations of two BZ gels coupled by compression were synchronized by a mechanical interaction. They mathematically explained the synchronization behavior using a phase oscillator model. As a different approach to the previous study, a physicochemical investigation of the phenomenon will lead to a better understanding of the functional biological rhythms essential for life. In this study, we construct a simple phenomenological model to understand the synchronization of BZ gels. The model consists of two parts. One is the dynamics of the chemical reactions in the BZ gels. We use a phenomenological model based on the Oregonator for the BZ reaction. The other is the dynamics of the mechanical deformation of the BZ gel. Using approximations, we extract the parameters essential for the synchronization of a mechanical interaction. Thus, we can derive a novel equation for the deformation dynamics of mechanically coupled BZ gels. By combining these two parts, we perform numerical calculations. This allows us to find that the synchronization of the two BZ gels is less likely to occur under stronger compression. We explain this trend through one physicochemical parameter in our model: the volume fraction of the BZ gel in the reduced state.

1.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
New York
,
1980
).
3.
M. L.
Shik
and
G. N.
Orlovsky
,
Physiol. Rev.
56
,
465
(
1976
).
4.
A. I.
Selverston
,
Behav. Brain Sci.
3
,
535
(
1980
).
5.
T.
Nakagaki
,
H.
Yamada
, and
T.
Ueda
,
Biophys. Chem.
84
,
195
(
2000
).
6.
A.
Tero
,
R.
Kobayashi
, and
T.
Nakagaki
,
Physica D
205
,
125
(
2005
).
7.
A.
Goldbeter
,
Biochemical Oscillations and Cellular Rhythms
(
Cambridge University Press
,
Cambridge, UK
,
1996
).
8.
J. C.
Dunlap
,
J. J.
Loros
, and
P. J.
DeCoursey
,
Chronobiology: Biological Timekeeping
(
Sinauer Associates
,
Sunderland, MA
,
2004
).
9.
B.
Hoare
,
Animal Migration: Remarkable Journeys in the Wild
(
University of California Press
,
2009
).
10.
D. J.
Aidley
,
Animal Migration
(
Cambridge University Press
,
1981
), Vol.
13
.
11.
J.
Zhang
,
W.-H.
Guo
, and
Y.-L.
Wang
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
16383
(
2014
).
12.
S. I.
Fraley
,
Y.
Feng
,
A.
Giri
,
G. D.
Longmore
, and
D.
Wirtz
,
Nat. Commun.
3
,
719
(
2012
).
13.
P.
Kohl
,
P.
Hunter
, and
D.
Noble
,
Prog. Biophys. Mol. Biol.
71
,
91
(
1999
).
14.
J. J.
Collins
and
I. N.
Stewart
,
J. Nonlinear Sci.
3
,
349
(
1993
).
15.
J. J.
Collins
and
I.
Stewart
,
Biol. Cybern.
68
,
287
(
1993
).
16.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
17.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Dover Publications, Inc.
,
Mineola, NY
,
2003
).
18.
H.
Fukuda
,
H.
Nagano
, and
S.
Kai
,
J. Phys. Soc. Jpn.
72
,
487
(
2003
).
19.
H.
Fukuda
,
H.
Morimura
, and
S.
Kai
,
Physica D
205
,
80
(
2005
).
20.
M.
Kuze
,
H.
Kitahata
, and
S.
Nakata
,
Phys. Chem. Chem. Phys.
23
,
24175
(
2021
).
21.
M. S.
Paoletti
,
C. R.
Nugent
, and
T. H.
Solomon
,
Phys. Rev. Lett.
96
,
124101
(
2006
).
22.
M.
Toiya
,
H. O.
González-Ochoa
,
V. K.
Vanag
,
S.
Fraden
, and
I. R.
Epstein
,
J. Phys. Chem. Lett.
1
,
1241
(
2010
).
23.
R. J.
Field
and
M.
Burger
,
Oscillations and Traveling Waves in Chemical Systems
(
John Wiley & Sons, Inc.
,
New York
,
1985
).
24.
A. N.
Zaikin
and
A. M.
Zhabotinsky
,
Nature
225
,
535
(
1970
).
25.
R.
Yoshida
,
T.
Takahashi
,
T.
Yamaguchi
, and
H.
Ichijo
,
J. Am. Chem. Soc.
118
,
5134
(
1996
).
26.
K.
Ito
,
T.
Ezaki
,
S.
Suzuki
,
R.
Kobayashi
,
Y.
Hara
, and
S.
Nakata
,
J. Phys. Chem. B
120
,
2977
(
2016
).
27.
T.
Shiota
,
Y. S.
Ikura
, and
S.
Nakata
,
J. Phys. Chem. B
117
,
2215
(
2013
).
28.
S.
Maeda
,
Y.
Hara
,
T.
Sakai
,
R.
Yoshida
, and
S.
Hashimoto
,
Adv. Mater.
19
,
3480
(
2007
).
29.
Y.
Yamada
,
H.
Ito
, and
S.
Maeda
,
Sci. Rep.
12
,
22436
(
2022
).
30.
Z.
Mao
,
M.
Kuroki
,
Y.
Otsuka
, and
S.
Maeda
,
Extreme Mech. Lett.
39
,
100830
(
2020
).
31.
K.
Yoshimura
,
Y.
Otsuka
,
Z.
Mao
,
V.
Cacucciolo
,
T.
Okutaki
,
H.
Yamagishi
,
S.
Hashimura
,
N.
Hosoya
,
T.
Sato
,
Y.
Yamanishi
, and
S.
Maeda
,
Sci. Rep.
10
,
12834
(
2020
).
32.
P. R.
Buskohl
and
R. A.
Vaia
,
Sci. Adv.
2
,
e1600813
(
2016
).
33.
L.
Ren
,
M.
Wang
,
C.
Pan
,
Q.
Gao
,
Y.
Liu
, and
I. R.
Epstein
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8704
(
2017
).
34.
R.
Teng
,
Y.
Li
,
L.
Ren
,
J.
Ma
,
I. R.
Epstein
, and
Q.
Gao
,
ChemPhysChem
24
,
e202300054
(
2023
).
35.
R.
Teng
,
Q.
Gao
,
L.
Yuan
,
L.
Ren
,
J.
Wang
,
Y.
Wang
, and
I. R.
Epstein
,
Cell Rep. Phys. Sci.
3
,
100933
(
2022
).
36.
V. V.
Yashin
and
A. C.
Balazs
,
Macromolecules
39
,
2024
(
2006
).
37.
V. V.
Yashin
and
A. C.
Balazs
,
J. Chem. Phys.
126
,
124707
(
2007
).
38.
O.
Kuksenok
,
V. V.
Yashin
, and
A. C.
Balazs
,
Phys. Rev. E
78
,
041406
(
2008
).
39.
Y.
Fang
,
V. V.
Yashin
,
S. P.
Levitan
, and
A. C.
Balazs
,
Sci. Adv.
2
,
e1601114
(
2016
).
40.
Y.
Fang
,
V. V.
Yashin
,
S. P.
Levitan
, and
A. C.
Balazs
,
Chem. Commun.
53
,
7692
(
2017
).
41.
Y.
Fang
,
V. V.
Yashin
,
S. J.
Dickerson
, and
A. C.
Balazs
,
J. Appl. Phys.
123
,
215107
(
2018
).
42.
Y.
Fang
,
V. V.
Yashin
,
S. J.
Dickerson
, and
A. C.
Balazs
,
Chaos
28
,
053106
(
2018
).
43.
V. V.
Yashin
and
A. C.
Balazs
,
Phys. Rev. E
77
,
046210
(
2008
).
44.
P.
Wang
,
S.
Liu
,
J.
Zhou
,
F.
Xu
, and
T.
Lu
,
Eur. Phys. J. E
36
,
108
(
2013
).
45.
V. V.
Yashin
,
S. P.
Levitan
, and
A. C.
Balazs
,
Chaos
25
,
064302
(
2015
).
46.
L.
Ren
,
L.
Yuan
,
Q.
Gao
,
R.
Teng
,
J.
Wang
, and
I. R.
Epstein
,
Sci. Adv.
6
,
eaaz9125
(
2020
).
47.
S. R.
Pullela
,
D.
Cristancho
,
P.
He
,
D.
Luo
,
K. R.
Hall
, and
Z.
Cheng
,
Phys. Chem. Chem. Phys.
11
,
4236
(
2009
).

Supplementary Material

You do not currently have access to this content.