We introduce a generalized micro–macro Markov chain Monte Carlo (mM-MCMC) method with pseudo-marginal approximation to the free energy that is able to accelerate sampling of the microscopic Gibbs distributions when there is a time-scale separation between the macroscopic dynamics of a reaction coordinate and the remaining microscopic degrees of freedom. The mM-MCMC method attains this efficiency by iterating four steps: (i) propose a new value of the reaction coordinate, (ii) accept or reject the macroscopic sample, (iii) run a biased simulation that creates a microscopic molecular instance that lies close to the newly sampled macroscopic reaction coordinate value, and (iv) microscopic accept/reject step for the new microscopic sample. In the present paper, we eliminate the main computational bottleneck of earlier versions of this method: the necessity to have an accurate approximation of free energy. We show that the introduction of a pseudo-marginal approximation significantly reduces the computational cost of the microscopic accept/reject step while still providing unbiased samples. We illustrate the method’s behavior on several molecular systems with low-dimensional reaction coordinates.

1.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
,
Free Energy Computations: A Mathematical Perspective
(
World Scientific
,
2010
).
2.
H.
Vandecasteele
and
G.
Samaey
, “
A micro-macro Markov chain Monte Carlo method for molecular dynamics using reaction coordinate proposals
,”
SIAM J. Sci. Comput.
45
(
2
),
B107
B138
(
2023
).
3.
H.
Vandecasteele
and
G.
Samaey
, “
Efficiency and parameter selection of a micro-macro Markov chain Monte Carlo method
,” arXiv:2209.13056 (
2022
).
4.
B. M.
Dickson
,
F.
Legoll
,
T.
Lelièvre
,
G.
Stoltz
, and
P.
Fleurat-Lessard
, “
Free energy calculations: An efficient adaptive biasing potential method
,”
J. Phys. Chem. B
114
,
5823
5830
(
2010
).
5.
J.
Comer
,
J. C.
Gumbart
,
J.
Hénin
,
T.
Lelièvre
,
A.
Pohorille
, and
C.
Chipot
, “
The adaptive biasing force method: Everything you always wanted to know but were afraid to ask
,”
J. Phys. Chem. B
119
,
1129
1151
(
2015
).
6.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
, “
Long-time convergence of an adaptive biasing force method
,”
Nonlinearity
21
,
1155
(
2008
).
7.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
, “
Computation of free energy differences through nonequilibrium stochastic dynamics: The reaction coordinate case
,”
J. Comput. Phys.
222
,
624
643
(
2007
).
8.
T.
Lelièvre
,
M.
Rousset
, and
G.
Stoltz
, “
Langevin dynamics with constraints and computation of free energy differences
,”
Math. Comput.
81
,
2071
2125
(
2012
).
9.
H. C.
Andersen
, “
Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations
,”
J. Comput. Phys.
52
,
24
34
(
1983
).
10.
C.
Andrieu
and
G. O.
Roberts
, “
The pseudo-marginal approach for efficient Monte Carlo computations
,”
Ann. Stat.
37
,
697
725
(
2009
).
11.
M.
Filippone
and
M.
Girolami
, “
Pseudo-marginal Bayesian inference for Gaussian processes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
36
,
2214
2226
(
2014
).
12.
J.
Alenlöv
,
A.
Doucet
, and
F.
Lindsten
, “
Pseudo-marginal Hamiltonian Monte Carlo
,” arXiv:1607.02516 (
2016
).
13.
C.
Sherlock
,
A. H.
Thiery
,
G. O.
Roberts
, and
J. S.
Rosenthal
, “
On the efficiency of pseudo-marginal random walk Metropolis algorithms
,”
Ann. Stat.
43
,
238
275
(
2015
).
14.
N.
Homeyer
and
H.
Gohlke
, “
Free energy calculations by the molecular Mechanics Poisson−Boltzmann surface area method
,”
Mol. Inf.
31
,
114
122
(
2012
).
15.
C.
Chipot
and
A.
Pohorille
,
Free Energy Calculations
(
Springer
,
2007
), Vol.
86
.
16.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
(
1997
).
17.
E.
Darve
,
D.
Rodríguez-Gómez
, and
A.
Pohorille
, “
Adaptive biasing force method for scalar and vector free energy calculations
,”
J. Chem. Phys.
128
,
144120
(
2008
).
18.
G.
Hummer
, “
Fast-growth thermodynamic integration: Error and efficiency analysis
,”
J. Chem. Phys.
114
,
7330
7337
(
2001
).
19.
M.
Rousset
and
G.
Stoltz
, “
Equilibrium sampling from nonequilibrium dynamics
,”
J. Stat. Phys.
123
,
1251
1272
(
2006
).
20.
M. A.
Beaumont
, “
Estimation of population growth or decline in genetically monitored populations
,”
Genetics
164
,
1139
1160
(
2003
).
21.
C.
Andrieu
and
M.
Vihola
, “
Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
,”
Ann. Appl. Probab.
25
,
1030
1077
(
2015
).
22.
A.
Durmus
,
G. O.
Roberts
,
G.
Vilmart
, and
K. C.
Zygalakis
, “
Fast Langevin based algorithm for MCMC in high dimensions
,”
Ann. Appl. Probab.
27
,
2195
2237
(
2017
).
23.
E.
Kalligiannaki
,
M. A.
Katsoulakis
, and
P.
Plechác
, “
Coupled coarse graining and Markov chain Monte Carlo for lattice systems
,”
Numerical Analysis of Multiscale Computations
(
Springer
,
2012
), pp.
235
257
.
24.
T.
Xifara
,
C.
Sherlock
,
S.
Livingstone
,
S.
Byrne
, and
M.
Girolami
, “
Langevin diffusions and the metropolis-adjusted Langevin algorithm
,”
Stat. Probab. Lett.
91
,
14
19
(
2014
).
25.
G. O.
Roberts
and
R. L.
Tweedie
, “
Exponential convergence of Langevin distributions and their discrete approximations
,”
Bernoulli
2
,
341
363
(
1996
).
26.
M.
Schappals
,
A.
Mecklenfeld
,
L.
Kröger
,
V.
Botan
,
A.
Köster
,
S.
Stephan
,
E. J.
García
,
G.
Rutkai
,
G.
Raabe
,
P.
Klein
et al, “
Round robin study: Molecular simulation of thermodynamic properties from models with internal degrees of freedom
,”
J. Chem. Theory Comput.
13
,
4270
4280
(
2017
).
27.
S. L.
Cotter
,
G. O.
Roberts
,
A. M.
Stuart
, and
D.
White
, “
MCMC methods for functions: Modifying old algorithms to make them faster
,”
Stat. Sci.
28
,
424
446
(
2013
).
You do not currently have access to this content.