Molybdenum disulfide (MoS2), a semiconducting two-dimensional layered transition metal dichalcogenide (2D TMDC), with attractive properties enables the opening of a new electronics era beyond Si. However, the notoriously high contact resistance (RC) regardless of the electrode metal has been a major challenge in the practical applications of MoS2-based electronics. Moreover, it is difficult to lower RC because the conventional doping technique is unsuitable for MoS2 due to its ultrathin nature. Therefore, the metal–insulator–semiconductor (MIS) architecture has been proposed as a method to fabricate a reliable and stable contact with low RC. Herein, we introduce a strategy to fabricate MIS contact based on atomic layer deposition (ALD) to dramatically reduce the RC of single-layer MoS2 field effect transistors (FETs). We utilize ALD Al2O3 as an interlayer for the MIS contact of bottom-gated MoS2 FETs. Based on the Langmuir isotherm, the uniformity of ALD Al2O3 films on MoS2 can be increased by modulating the precursor injection pressures even at low temperatures of 150 °C. We discovered, for the first time, that film uniformity critically affects RC without altering the film thickness. Additionally, we can add functionality to the uniform interlayer by adopting isopropyl alcohol (IPA) as an oxidant. Tunneling resistance across the MIS contact is lowered by n-type doping of MoS2 induced by IPA as the oxidant in the ALD process. Through a highly uniform interlayer combined with strong doping, the contact resistance is improved by more than two orders of magnitude compared to that of other MoS2 FETs fabricated in this study.

1.
H.-Y.
Chang
et al, “
High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems
,”
ACS Nano
7
(
6
),
5446
5452
(
2013
).
2.
W. J.
Woo
et al, “
Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition
,”
2D Mater.
6
(
1
),
015019
(
2018
).
3.
X.
Zou
et al, “
Interface engineering for high-performance top-gated MoS2 field-effect transistors
,”
Adv. Mater.
26
(
36
),
6255
6261
(
2014
).
4.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
5.
K. Y.
Ko
et al, “
High-performance gas sensor using a large-area WS2xSe2−2x alloy for low-power operation wearable applications
,”
ACS Appl. Mater. Interfaces
10
(
40
),
34163
34171
(
2018
).
6.
J.-G.
Song
et al, “
Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer
,”
Nat. Commun.
6
(
1
),
7817
(
2015
).
7.
M. C.
Lemme
,
D.
Akinwande
,
C.
Huyghebaert
, and
C.
Stampfer
, “
2D materials for future heterogeneous electronics
,”
Nat. Commun.
13
(
1
),
1392
(
2022
).
8.
C.
Huyghebaert
,
T.
Schram
,
Q.
Smets
,
T. K.
Agarwal
,
D.
Verreck
, and
S.
Brems
, “
2D materials: Roadmap to CMOS integration
,” in
2018 IEEE International Electron Devices Meeting
(
IEEE
,
2018
), Vol.
1
, pp.
22.1.1
22.1.4
.
9.
S.
Wang
,
X.
Liu
, and
P.
Zhou
, “
The road for 2D semiconductors in the silicon age
,”
Adv. Mater.
34
(
48
),
2106886
(
2022
).
10.
S. J.
Koester
, “
Contacts for 2D-material MOSFETs: Recent advances and outstanding challenges
,” in
2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)
(
IEEE
,
2023
), pp.
35
37
.
11.
W.
Cao
,
J.
Kang
,
W.
Liu
, and
K.
Banerjee
, “
A compact current-voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect
,”
IEEE Trans. Electron Devices
61
(
12
),
4282
4290
(
2014
).
12.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
, “
Channel length scaling of MoS2 MOSFETs
,”
ACS Nano
6
(
10
),
8563
8569
(
2012
).
13.
X.
Jing
et al, “
Engineering field effect transistors with 2D semiconducting channels: Status and prospects
,”
Adv. Funct. Mater.
30
(
18
),
1901971
(
2020
).
14.
D.
Akinwande
et al, “
Graphene and two-dimensional materials for silicon technology
,”
Nature
573
(
7775
),
507
518
(
2019
).
15.
C.
Liu
et al, “
Two-dimensional materials for next-generation computing technologies
,”
Nat. Nanotechnol.
15
(
7
),
545
557
(
2020
).
16.
A.
Allain
,
J.
Kang
,
K.
Banerjee
, and
A.
Kis
, “
Electrical contacts to two-dimensional semiconductors
,”
Nat. Mater.
14
(
12
),
1195
1205
(
2015
).
17.
C.
Gong
,
L.
Colombo
,
R. M.
Wallace
, and
K.
Cho
, “
The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces
,”
Nano Lett.
14
(
4
),
1714
1720
(
2014
).
18.
S. G.
Louie
and
M. L.
Cohen
, “
Self-consistent pseudopotential calculation for a metal-semiconductor interface
,”
Phys. Rev. Lett.
35
(
13
),
866
869
(
1975
).
19.
V.
Heine
, “
Theory of surface states
,”
Phys. Rev.
138
(
6A
),
A1689
A1696
(
1965
).
20.
R. T.
Tung
, “
The physics and chemistry of the Schottky barrier height
,”
Appl. Phys. Rev.
1
(
1
),
011304
(
2014
).
21.
R.
Kappera
et al, “
Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
,”
Nat. Mater.
13
(
12
),
1128
1134
(
2014
).
22.
W. S.
Leong
,
X.
Luo
,
Y.
Li
,
K. H.
Khoo
,
S. Y.
Quek
, and
J. T. L.
Thong
, “
Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes
,”
ACS Nano
9
(
1
),
869
877
(
2015
).
23.
J.
Yoon
et al, “
Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes
,”
Small
9
,
3295
(
2013
).
24.
T.
Wang
et al, “
High-performance WSe2 phototransistors with 2D/2D ohmic contacts
,”
Nano Lett.
18
(
5
),
2766
2771
(
2018
).
25.
A. R.
Kim
et al, “
Alloyed 2D metal–semiconductor atomic layer junctions
,”
Nano Lett.
16
(
3
),
1890
1895
(
2016
).
26.
J.
Jang
et al, “
Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors
,”
ACS Appl. Mater. Interfaces
12
(
4
),
5031
5039
(
2020
).
27.
S.
Zheng
,
H.
Lu
,
H.
Liu
,
D.
Liu
, and
J.
Robertson
, “
Insertion of an ultrathin Al2O3 interfacial layer for Schottky barrier height reduction in WS2 field-effect transistors
,”
Nanoscale
11
(
11
),
4811
4821
(
2019
).
28.
S.
Lee
,
A.
Tang
,
S.
Aloni
, and
H.-S.
Philip Wong
, “
Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2
,”
Nano Lett.
16
(
1
),
276
281
(
2016
).
29.
J.
Wang
et al, “
High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer
,”
Adv. Mater.
28
(
37
),
8302
8308
(
2016
).
30.
J.-R.
Chen
et al, “
Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts
,”
Nano Lett.
13
(
7
),
3106
3110
(
2013
).
31.
A.
Dankert
,
L.
Langouche
,
M. V.
Kamalakar
, and
S. P.
Dash
, “
High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts
,”
ACS Nano
8
(
1
),
476
482
(
2014
).
32.
N. A. N.
Phan
et al, “
Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts
,”
Small
18
(
13
),
2105753
(
2022
).
33.
T.
Lazar
,
P.
Gowrisankar
,
E. S.
Esakki
,
V.
Balaprakash
, and
R.
Seeniammal
, “
Fabrication and photosensitivity analysis of MIS Schottky barrier diodes with different molar concentrations of MoO3 thin films
,”
Solid State Commun.
369
,
115194
(
2023
).
34.
T.
Nam
,
S.
Seo
, and
H.
Kim
, “
Atomic layer deposition of a uniform thin film on two-dimensional transition metal dichalcogenides
,”
J. Vac. Sci. Technol. A
38
(
3
),
030803
(
2020
).
35.
H. G.
Kim
and
H. B. R.
Lee
, “
Atomic layer deposition on 2D materials
,”
Chem. Mater.
29
(
9
),
3809
3826
(
2017
).
36.
S.
Park
et al, “
Interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone-treated multilayer MoS2 crystals
,”
ACS Appl. Mater. Interfaces
8
(
18
),
11189
11193
(
2016
).
37.
J.
Wang
et al, “
Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation
,”
Small
11
(
44
),
5932
5938
(
2015
).
38.
L.
Cheng
et al, “
Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone
,”
ACS Appl. Mater. Interfaces
6
(
15
),
11834
11838
(
2014
).
39.
C.
Wirtz
et al, “
Atomic layer deposition on 2D transition metal chalcogenides: Layer dependent reactivity and seeding with organic ad-layers
,”
Chem. Commun.
51
(
92
),
16553
16556
(
2015
).
40.
H.
Liu
,
K.
Xu
,
X.
Zhang
, and
P. D.
Ye
, “
The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition
,”
Appl. Phys. Lett.
100
(
15
),
152115
(
2012
).
41.
S.
Seo
et al, “
Reaction mechanism of area-selective atomic layer deposition for Al2O3 nanopatterns
,”
ACS Appl. Mater. Interfaces
9
(
47
),
41607
41617
(
2017
).
42.
N.
Li
et al, “
Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics
,”
Adv. Mater. Interfaces
6
(
10
),
1802055
(
2019
).
43.
W. J.
Woo
et al, “
MoS2 doping by atomic layer deposition of high-k dielectrics using alcohol as process oxidants
,”
Appl. Surf. Sci.
541
,
148504
(
2021
).
44.
J.-G.
Song
et al, “
Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor
,”
ACS Appl. Mater. Interfaces
8
(
41
),
28130
28135
(
2016
).
45.
J.-G.
Song
et al, “
Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride
,”
Nanotechnology
28
(
46
),
465103
(
2017
).
46.
W.
Liu
,
J.
Kang
,
D.
Sarkar
,
Y.
Khatami
,
D.
Jena
, and
K.
Banerjee
, “
Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors
,”
Nano Lett.
13
(
5
),
1983
1990
(
2013
).
47.
N.
Braslau
, “
Alloyed ohmic contacts to GaAs
,”
J. Vac. Sci. Technol.
19
(
3
),
803
807
(
1981
).
48.
M. J.
Moody
et al, “
Atomic layer deposition of molybdenum oxides with tunable stoichiometry enables controllable doping of MoS2
,”
Chem. Mater.
30
(
11
),
3628
3632
(
2018
).
49.
P.
Bampoulis
,
R.
van Bremen
,
Q.
Yao
,
B.
Poelsema
,
H. J. W.
Zandvliet
, and
K.
Sotthewes
, “
Defect dominated charge transport and Fermi level pinning in MoS2/metal contacts
,”
ACS Appl. Mater. Interfaces
9
(
22
),
19278
19286
(
2017
).
50.
V.
Brudnyi
,
S.
Grinyaev
, and
V.
Stepanov
, “
Local neutrality conception: Fermi level pinning in defective semiconductors
,”
Physica B
212
(
4
),
429
435
(
1995
).
51.
N.
Kaushik
,
D.
Karmakar
,
A.
Nipane
,
S.
Karande
, and
S.
Lodha
, “
Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2
,”
ACS Appl. Mater. Interfaces
8
(
1
),
256
263
(
2016
).
52.
Y.
Du
,
H.
Liu
,
A. T.
Neal
,
M.
Si
, and
P. D.
Ye
, “
Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances
,”
IEEE Electron Device Lett.
34
(
10
),
1328
1330
(
2013
).
53.
L.
Yang
et al, “
High-performance MoS2 field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ·µm) and record high drain current (460 µA/µm)
,” in
2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers
(
IEEE
,
2014
), pp.
1
2
.
54.
W.
Liu
et al, “
High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance
,” in
2013 IEEE International Electron Devices Meeting
(
IEEE
,
2013
), pp.
19.4.1
19.4.4
.

Supplementary Material

You do not currently have access to this content.