Fluorescence-encoded infrared (FEIR) spectroscopy is a recently developed technique for solution-phase vibrational spectroscopy with detection sensitivity at the single-molecule level. While its spectroscopic information content and important criteria for its practical experimental optimization have been identified, a general understanding of the electronic and nuclear properties required for highly sensitive detection, i.e., what makes a molecule a “good FEIR chromophore,” is lacking. This work explores the molecular factors that determine FEIR vibrational activity and assesses computational approaches for its prediction. We employ density functional theory (DFT) and its time-dependent version (TD-DFT) to compute vibrational and electronic transition dipole moments, their relative orientation, and the Franck–Condon factors involved in FEIR activity. We apply these methods to compute the FEIR activities of normal modes of chromophores from the coumarin family and compare these predictions with experimental FEIR cross sections. We discuss the extent to which we can use computational models to predict the FEIR activity of individual vibrations in a candidate molecule. The results discussed in this work provide the groundwork for computational strategies for choosing FEIR vibrational probes or informing the structure of designer chromophores for single-molecule spectroscopic applications.

1.
D. L.
Jeanmaire
and
R. P.
Van Duyne
, “
Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode
,”
J. Electroanal. Chem.
84
,
1
(
1977
).
2.
M.
Fleischmann
,
P. J.
Hendra
, and
A. J.
McQuillan
, “
Raman spectra of pyridine adsorbed at a silver electrode
,”
Chem. Phys. Lett.
26
,
163
(
1974
).
3.
M. G.
Albrecht
and
J. A.
Creighton
, “
Anomalously intense Raman spectra of pyridine at a silver electrode
,”
J. Am. Chem. Soc.
99
,
5215
(
1977
).
4.
J.
Wessel
, “
Surface-enhanced optical microscopy
,”
J. Opt. Soc. Am. B
2
,
1538
(
1985
).
5.
S.
Nie
and
S. R.
Emory
, “
Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
,”
Science
275
,
1102
(
1997
).
6.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
, “
Single molecule detection using surface-enhanced Raman scattering (SERS)
,”
Phys. Rev. Lett.
78
,
1667
(
1997
).
7.
A.
Laubereau
,
A.
Seilmeier
, and
W.
Kaiser
, “
A new technique to measure ultrashort vibrational relaxation times in liquid systems
,”
Chem. Phys. Lett.
36
,
232
(
1975
).
8.
A.
Seilmeier
,
W.
Kaiser
,
A.
Laubereau
, and
S. F.
Fischer
, “
A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules
,”
Chem. Phys. Lett.
58
,
225
(
1978
).
9.
H. J.
Hübner
,
M.
Wörner
,
W.
Kaiser
, and
A.
Seilmeier
, “
Subpicosecond vibrational relaxation of skeletal modes in polyatomic molecules
,”
Chem. Phys. Lett.
182
,
315
(
1991
).
10.
J. C.
Wright
, “
Double resonance excitation of fluorescence in the condensed phase—An alternative to infrared, Raman, and fluorescence spectroscopy
,”
Appl. Spectrosc.
34
,
151
(
1980
).
11.
W. E.
Moerner
and
D. P.
Fromm
, “
Methods of single-molecule fluorescence spectroscopy and microscopy
,”
Rev. Sci. Instrum.
74
,
3597
(
2003
).
12.
S.
Weiss
, “
Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy
,”
Nat. Struct. Biol.
7
,
724
(
2000
).
13.
B.
Schuler
, “
Single-molecule fluorescence spectroscopy of protein folding
,”
ChemPhysChem
6
,
1206
(
2005
).
14.
T.
Ha
,
A. Y.
Ting
,
J.
Liang
,
W. B.
Caldwell
,
A. A.
Deniz
,
D. S.
Chemla
,
P. G.
Schultz
, and
S.
Weiss
, “
Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism
,”
Proc. Nat. Acad. Sci. U.S.A.
96
,
893
(
1999
).
15.
H.
Xiong
and
W.
Min
, “
Combining the best of two worlds: Stimulated Raman excited fluorescence
,”
J. Chem. Phys.
153
,
210901
(
2020
).
16.
H.
Xiong
,
N.
Qian
,
Y.
Miao
,
Z.
Zhao
, and
W.
Min
, “
Stimulated Raman excited fluorescence spectroscopy of visible dyes
,”
J. Phys. Chem. Lett.
10
,
3563
(
2019
).
17.
H.
Xiong
,
L.
Shi
,
L.
Wei
,
Y.
Shen
,
R.
Long
,
Z.
Zhao
, and
W.
Min
, “
Stimulated Raman excited fluorescence spectroscopy and imaging
,”
Nat. Photonics
13
,
412
(
2019
).
18.
L.
Whaley-Mayda
,
S. B.
Penwell
, and
A.
Tokmakoff
, “
Fluorescence-encoded infrared spectroscopy: Ultrafast vibrational spectroscopy on small ensembles of molecules in solution
,”
J. Phys. Chem. Lett.
10
,
1967
(
2019
).
19.
L.
Whaley-mayda
,
A.
Guha
,
S. B.
Penwell
, and
A.
Tokmakoff
, “
Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity
,”
J. Am. Chem. Soc.
143
,
3060
(
2021
).
20.
L.
Whaley-Mayda
,
A.
Guha
, and
A.
Tokmakoff
, “
Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy
,”
J. Chem. Phys.
156
,
174202
(
2022
).
21.
H.
Wang
,
D.
Lee
,
Y.
Cao
,
X.
Bi
,
J.
Du
,
K.
Miao
, and
L.
Wei
, “
Bond-selective fluorescence imaging with single-molecule sensitivity
,”
Nat. Photonics
17
,
846
(
2023
).
22.
R.
Chikkaraddy
,
R.
Arul
,
L. A.
Jakob
, and
J. J.
Baumberg
, “
Single-molecule mid-infrared spectroscopy and detection through vibrationally assisted luminescence
,”
Nat. Photonics
17
,
865
(
2023
).
23.
X.
Liu
,
J. M.
Cole
, and
Z.
Xu
, “
Substantial intramolecular charge transfer induces long emission wavelengths and mega Stokes shifts in 6-aminocoumarins
,”
J. Phys. Chem. C
121
,
13274
(
2017
).
24.
X.
Liu
,
J. M.
Cole
,
P. G.
Waddell
,
T.-C.
Lin
,
J.
Radia
, and
A.
Zeidler
, “
Molecular origins of optoelectronic properties in coumarin dyes: Toward designer solar cell and laser applications
,”
J. Phys. Chem. A
116
,
727
(
2012
).
25.
X.
Liu
,
Z.
Xu
, and
J. M.
Cole
, “
Molecular design of UV–vis absorption and emission properties in organic fluorophores: Toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater Stokes shifts
,”
J. Phys. Chem. C
117
,
16584
(
2013
).
26.
L.
Whaley-Mayda
,
A.
Guha
, and
A.
Tokmakoff
, “
Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. I. Response function theory
,”
J. Chem. Phys.
159
,
194201
(
2023
).
27.
L.
Whaley-Mayda
,
A.
Guha
, and
A.
Tokmakoff
, “
Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. II. Analysis of early-time signals
,”
J. Chem. Phys.
159
,
194202
(
2023
).
28.
J. D.
Gaynor
,
R. B.
Weakly
, and
M.
Khalil
, “
Multimode two-dimensional vibronic spectroscopy. I. Orientational response and polarization-selectivity
,”
J. Chem. Phys.
154
,
184201
(
2021
).
29.
F.
Santoro
,
A.
Lami
,
R.
Improta
, and
V.
Barone
, “
Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution
,”
J. Chem. Phys.
126
,
184102
(
2007
).
30.
J.
Von Cosel
,
J.
Cerezo
,
D.
Kern-Michler
,
C.
Neumann
,
L. J. G. W.
Van Wilderen
,
J.
Bredenbeck
,
F.
Santoro
, and
I.
Burghardt
, “
Vibrationally resolved electronic spectra including vibrational pre-excitation: Theory and application to VIPER spectroscopy
,”
J. Chem. Phys.
147
,
164116
(
2017
).
31.
P. T.
Ruhoff
, “
Recursion relations for multi-dimensional Franck-Condon overlap integrals
,”
Chem. Phys.
186
,
355
(
1994
).
32.
T. E.
Sharp
and
H. M.
Rosenstock
, “
Franck—Condon factors for polyatomic molecules
,”
J. Chem. Phys.
41
,
3453
(
1964
).
33.
J.
Lermé
, “
Iterative methods to compute one- and two-dimensional Franck-Condon factors. Tests of accuracy and application to study indirect molecular transitions
,”
Chem. Phys.
145
,
67
(
1990
).
34.
X.
Gao
,
X.
Li
, and
W.
Min
, “
Absolute stimulated Raman cross sections of molecules
,”
J. Phys. Chem. Letters
14
,
5701
(
2023
).
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
GAUSSIAN 09, Revision B. 01
,
Gaussian Inc.
,
2016
.
36.
A.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
37.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
(
1994
).
38.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpete
, and
C.
Adamo
, “
Extensive TD-DFT benchmark: Singlet-excited states of organic molecules
,”
J. Chem. Theory Comput.
5
,
2420
(
2009
).
39.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
40.
See http://www.pi.iccom.cnr.it/fcclasses
for FCclasses: A Fortran 77 Code, F. Santoro
,
2008
.
41.
M. I.
Sorour
,
A. H.
Marcus
, and
S.
Matsika
, “
Modeling the electronic absorption spectra of the indocarbocyanine Cy3
,”
Molecules
27
,
4062
(
2022
).
42.
See https://cccbdb.nist.gov/vibscalejust.asp
for NIST Computational Chemistry Comparison and Benchmark DataBase, NIST Standard Reference Database 101
,
2022
.
43.
D.
Jacquemin
,
B.
Mennucci
, and
C.
Adamo
, “
Excited-state calculations with TD-DFT: From benchmarks to simulations in complex environments
,”
Phys. Chem. Chem. Phys.
13
,
16987
(
2011
).
44.
S.
Manzhos
,
H.
Segawa
, and
K.
Yamashita
, “
Computational dye design by changing the conjugation order: Failure of LR-TDDFT to predict relative excitation energies in organic dyes differing by the position of the methine unit
,”
Chem. Phys. Lett.
527
,
51
(
2012
).
45.
D.
Jacquemin
and
C.
Adamo
, “
Bond length alternation of conjugated oligomers: Wave function and DFT benchmarks
,”
J. Chem. Theory Comput.
7
,
369
(
2011
).

Supplementary Material

You do not currently have access to this content.