In this paper, we develop and analyze a number of perturbation series that target the coupled cluster singles and doubles (CCSD) ground state energy. We show how classical Møller–Plesset perturbation theory series can be restructured to target the CCSD energy based on a reference CCS calculation and how the corresponding cluster perturbation series differs from the classical Møller–Plesset perturbation series. Subsequently, we reformulate these series using the coupled cluster Lagrangian framework to obtain series, where fourth and fifth order energies are determined only using parameters through second order. To test the methods, we perform a series of test calculations on molecular photoswitches of both total energies and reaction energies. We find that the fifth order reaction energies are of CCSD quality and that they are of comparable accuracy to state-of-the-art approximations to the CCSD energy based on local pair natural orbitals. The advantage of the present approach over local correlation methods is the absence of user defined threshold parameters for neglecting or approximating contributions to the correlation energy. Fixed threshold parameters lead to discontinuous energy surfaces, although this effect is often small enough to be ignored, but the present approach has a differentiable energy that will facilitate derivation and implementation of gradients and higher derivatives. A further advantage is that the calculation of the perturbation correction is non-iterative and can, therefore, be calculated in parallel, leading to a short time-to-solution.

1.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
2.
G. D.
Purvis
III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
3.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
4.
J. J.
Eriksen
,
K.
Kristensen
,
T.
Kjærgaard
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
140
,
064108
(
2014
).
5.
J. J.
Eriksen
,
P.
Jørgensen
, and
J.
Gauss
,
J. Chem. Phys.
142
,
014102
(
2015
).
6.
K.
Kristensen
,
J. J.
Eriksen
,
D. A.
Matthews
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
144
,
064103
(
2016
).
7.
F.
Pawłowski
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
150
,
134108
(
2019
).
8.
F.
Pawłowski
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
150
,
134109
(
2019
).
9.
P.
Baudin
,
F.
Pawłowski
,
D.
Bykov
,
D.
Liakh
,
K.
Kristensen
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
150
,
134110
(
2019
).
10.
F.
Pawłowski
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
150
,
134111
(
2019
).
11.
F.
Pawłowski
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
150
,
134112
(
2019
).
12.
J.
Olsen
,
A. E.
Hillers-Bendtsen
,
F. Ø.
Kjeldal
,
N. M.
Høyer
,
K. V.
Mikkelsen
, and
P.
Jørgensen
,
J. Chem. Phys.
157
,
024106
(
2022
).
13.
J.
Olsen
,
A. E.
Hillers-Bendtsen
,
F. Ø.
Kjeldal
,
N. M.
Høyer
,
K. V.
Mikkelsen
, and
P.
Jorgensen
,
J. Chem. Phys.
157
,
024107
(
2022
).
14.
J.
Olsen
,
A. E.
Hillers-Bendtsen
,
F. Ø.
Kjeldal
,
N. M.
Høyer
,
K. V.
Mikkelsen
, and
P.
Jorgensen
,
J. Chem. Phys.
157
,
024108
(
2022
).
15.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
42
,
1119
(
1965
).
16.
W.
Meyer
,
Int. J. Quantum Chem.
5
,
341
(
1971
).
17.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
18.
W.
Meyer
and
P.
Rosmus
,
J. Chem. Phys.
63
,
2356
(
1975
).
19.
H.-J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
20.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
21.
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Phys.
133
,
014107
(
2010
).
22.
K.
Kristensen
,
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
7
,
1677
(
2011
).
23.
K.
Kristensen
,
I. M.
Høyvik
,
B.
Jansik
,
P.
Jørgensen
,
T.
Kjærgaard
,
S.
Reine
, and
J.
Jakowski
,
Phys. Chem. Chem. Phys.
14
,
15706
(
2012
).
24.
I.-M.
Høyvik
,
K.
Kristensen
,
B.
Jansik
, and
P.
Jørgensen
,
J. Chem. Phys.
136
,
014105
(
2012
).
25.
J. J.
Eriksen
,
P.
Baudin
,
P.
Ettenhuber
,
K.
Kristensen
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
11
,
2984
(
2015
).
26.
T.
Kjærgaard
,
P.
Baudin
,
D.
Bykov
,
K.
Kristensen
, and
P.
Jørgensen
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1319
(
2017
).
27.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
3650
(
2017
).
28.
Q.
Ma
,
M.
Schwilk
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
4871
(
2017
).
29.
Q.
Ma
and
H.-J.
Werner
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1371
(
2018
).
30.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
14
,
198
(
2018
).
31.
H.-J.
Werner
,
J. Chem. Phys.
145
,
201101
(
2016
).
32.
M.
Sparta
and
F.
Neese
,
Chem. Soc. Rev.
43
,
5032
(
2014
).
33.
I. M.
Høyvik
and
P.
Jørgensen
,
Chem. Rev.
116
,
3306
(
2016
).
34.
S.
Sæbø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
35.
S.
Saebo/
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
36.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
).
37.
S.
Saebo/
,
W.
Tong
, and
P.
Pulay
,
J. Chem. Phys.
98
,
2170
(
1993
).
38.
S.
Saebo
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
39.
L. M.
Huntington
,
A.
Hansen
,
F.
Neese
, and
M.
Nooijen
,
J. Chem. Phys.
136
,
064101
(
2012
).
40.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
41.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
42.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
43.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
44.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
45.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta
75
,
111
(
1989
).
46.
T.
Helgaker
and
P.
Jørgensen
,
NATO ASI Series
(
Springer US
,
1992
), pp.
353
421
.
47.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
48.
M.
Jevric
,
A. U.
Petersen
,
M.
Mansø
,
S.
Kumar Singh
,
Z.
Wang
,
A.
Dreos
,
C.
Sumby
,
M. B.
Nielsen
,
K.
Börjesson
,
P.
Erhart
, and
K.
Moth-Poulsen
,
Chem. -Eur. J.
24
,
12767
(
2018
).
49.
M.
Brøndsted Nielsen
,
N.
Ree
,
K. V.
Mikkelsen
, and
M.
Cacciarini
,
Russ. Chem. Rev.
89
,
573
(
2020
).
50.
H.
Taoda
,
K.
Hayakawa
,
K.
Kawase
, and
H.
Yamakita
,
J. Chem. Eng. Jpn.
20
,
265
(
1987
).
51.
J.
Volarić
,
W.
Szymanski
,
N. A.
Simeth
, and
B. L.
Feringa
,
Chem. Soc. Rev.
50
,
12377
(
2021
).
52.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
(
2014
).
53.
See http://daltonprogram.org for LSDalton, a linear-scaling molecular electronic structure program, Release 2020,
2020
.
54.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
,
J. Chem. Phys.
152
,
224108
(
2020
).
55.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
56.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
57.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
58.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
59.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
60.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
61.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
62.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
63.
P.
Hariharan
and
J.
Pople
,
Mol. Phys.
27
,
209
(
1974
).
64.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
).
You do not currently have access to this content.