Understanding the influence of a crowded intracellular environment on the structure and solvation of DNA functionalized gold nanoparticles (ss-DNA AuNP) is necessary for designing applications in nanomedicine. In this study, the effect of single (Gly, Ser, Lys) and mixture of amino acids (Gly+Ser, Gly+Lys, Ser+Lys) at crowded concentrations is examined on the structure of the ss-DNA AuNP using molecular dynamics simulations. Using the structural estimators such as pair correlation functions and ligand shell positional fluctuations, the solvation entropy is estimated. Combining the AuNP–solvent interaction energy with the solvation entropy estimates, the free energy of solvation of the AuNP in crowded solutions is computed. The solvation entropy favours the solvation free energy which becomes more favourable for larger effective size of AuNP in crowded solutions relative to that in water. The effective size of AuNP depends on the different propensity of the crowders to adsorb on Au surface, with the smallest crowder (Gly) having the highest propensity inducing the least effective AuNP size as compared to other single crowder solutions. In mixed crowded solutions of amino acids of variable size and chemistry, distinctive local adsorption of the crowders on the gold surface is observed that controls the additive or non-additive crowding effects which govern an increase (in Gly+Ser) or decrease (in Gly+Lys) in nanoparticle effective size respectively. The results shed light into the fundamental understanding of the influence of intracellular crowding on structure of ss-DNA AuNP and plausible employability of crowding as a tool to design programmable self-assembly of functionalized nanoparticles.

1.
J. J.
Storhoff
and
C. A.
Mirkin
, “
Programmed materials synthesis with DNA
,”
Chem. Rev.
99
,
1849
1862
(
1999
).
2.
S. Y.
Park
,
A. K.
Lytton-Jean
,
B.
Lee
,
S.
Weigand
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
DNA-programmable nanoparticle crystallization
,”
Nature
451
,
553
556
(
2008
).
3.
K.
Saha
,
S. S.
Agasti
,
C.
Kim
,
X.
Li
, and
V. M.
Rotello
, “
Gold nanoparticles in chemical and biological sensing
,”
Chem. Rev.
112
,
2739
2779
(
2012
).
4.
W.
Zhao
,
M. A.
Brook
, and
Y.
Li
, “
Design of gold nanoparticle-based colorimetric biosensing assays
,”
ChemBioChem
9
,
2363
2371
(
2008
).
5.
N. L.
Rosi
and
C. A.
Mirkin
, “
Nanostructures in biodiagnostics
,”
ChemInform
36
,
1547
1562
(
2005
).
6.
D. A.
Giljohann
,
D. S.
Seferos
,
W. L.
Daniel
,
M. D.
Massich
,
P. C.
Patel
, and
C. A.
Mirkin
, “
Gold nanoparticles for biology and medicine
,”
Angew. Chem., Int. Ed.
49
,
3280
3294
(
2010
).
7.
H.
Wang
,
R.
Yang
,
L.
Yang
, and
W.
Tan
, “
Nucleic acid conjugated nanomaterials for enhanced molecular recognition
,”
ACS Nano
3
,
2451
2460
(
2009
).
8.
O. S.
Lee
,
T. R.
Prytkova
, and
G. C.
Schatz
, “
Using DNA to link gold nanoparticles, polymers, and molecules: A theoretical perspective
,”
J. Phys. Chem. Lett.
1
,
1781
1788
(
2010
).
9.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
Journal of Polymer Science
33
,
183
192
(
1958
).
10.
R.
Bhat
and
S. N.
Timasheff
, “
Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols
,”
Protein Sci.
1
,
1133
1143
(
1992
).
11.
R. J.
Ellis
, “
Macromolecular crowding: An important but neglected aspect of the intracellular environment
,”
Curr. Opin. Struct. Biol.
11
,
114
119
(
2001
).
12.
S. B.
Zimmerman
and
A. P.
Minton
, “
Macromolecular crowding: Biochemical, biophysical, and physiological consequences
,”
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
65
(
1993
).
13.
H. X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences
,”
Annu. Rev. Biophys.
37
,
375
397
(
2008
).
14.
R.
Harada
,
N.
Tochio
,
T.
Kigawa
,
Y.
Sugita
, and
M.
Feig
, “
Reduced native state stability in crowded cellular environment due to protein-protein interactions
,”
J. Am. Chem. Soc.
135
,
3696
3701
(
2013
).
15.
M.
Senske
,
L.
Törk
,
B.
Born
,
M.
Havenith
,
C.
Herrmann
, and
S.
Ebbinghaus
, “
Protein stabilization by macromolecular crowding through enthalpy rather than entropy
,”
J. Am. Chem. Soc.
136
,
9036
9041
(
2014
).
16.
S. K.
Mukherjee
,
S.
Gautam
,
S.
Biswas
,
J.
Kundu
, and
P. K.
Chowdhury
, “
Do macromolecular crowding agents exert only an excluded volume effect? A protein solvation study
,”
J. Phys. Chem. B
119
,
14145
14156
(
2015
).
17.
L.
Sapir
and
D.
Harries
, “
Is the depletion force entropic? Molecular crowding beyond steric interactions
,”
Curr. Opin. Colloid Interface Sci.
20
,
3
10
(
2015
).
18.
D.
Nayar
, “
Small crowder interactions can drive hydrophobic polymer collapse as well as unfolding
,”
Phys. Chem. Chem. Phys.
22
,
18091
18101
(
2020
).
19.
M.
Sarkar
,
C.
Li
, and
G. J.
Pielak
, “
Soft interactions and crowding
,”
Biophys. Rev.
5
,
187
194
(
2013
).
20.
D.
Nayar
,
H. O. S.
Yadav
,
B. S.
Jabes
, and
C.
Chakravarty
, “
Relating structure, entropy, and energy of solvation of nanoscale solutes: Application to gold nanoparticle dispersions
,”
J. Phys. Chem. B
116
,
13124
13132
(
2012
).
21.
O. S.
Lee
and
G. C.
Schatz
, “
Molecular dynamics simulation of DNA-functionalized gold nanoparticles
,”
J. Phys. Chem. C
113
,
2316
2321
(
2009
).
22.
R.
Jin
,
G.
Wu
,
Z.
Li
,
C. A.
Mirkin
, and
G. C.
Schatz
, “
What controls the melting properties of DNA-linked gold nanoparticle assemblies?
,”
J. Am. Chem. Soc.
125
,
1643
1654
(
2003
).
23.
S. J.
Hurst
,
H. D.
Hill
, and
C. A.
Mirkin
, “
“Three-Dimensional hybridization” with polyvalent DNA−Gold nanoparticle conjugates
,”
J. Am. Chem. Soc.
130
,
12192
12200
(
2008
).
24.
S. J.
Tan
,
J. S.
Kahn
,
T. L.
Derrien
,
M. J.
Campolongo
,
M.
Zhao
,
D.-M.
Smilgies
, and
D.
Luo
, “
Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt environments
,”
Angew. Chem.
126
,
1340
1343
(
2014
).
25.
G. P.
Goodrich
,
M. R.
Helfrich
,
J. J.
Overberg
, and
C. D.
Keating
, “
Effect of macromolecular crowding on DNA:Au nanoparticle bioconjugate assembly
,”
Langmuir
20
,
10246
10251
(
2004
).
26.
J.
Shin
,
X.
Zhang
, and
J.
Liu
, “
DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions
,”
J. Phys. Chem. B
116
,
13396
13402
(
2012
).
27.
P. E.
Theodorakis
,
N. G.
Fytas
,
G.
Kahl
, and
C.
Dellago
, “
Self-assembly of DNA-functionalized colloids
,”
Condens. Matter Phys.
18
,
22801
22824
(
2015
).
28.
A.
Seifpour
,
S. R.
Dahl
, and
A.
Jayaraman
, “
Molecular simulation study of assembly of DNA-grafted nanoparticles: Effect of bidispersity in DNA strand length
,”
Mol. Simul.
40
,
1085
1098
(
2014
).
29.
N. K.
Li
,
H. S.
Kim
,
J. A.
Nash
,
M.
Lim
, and
Y. G.
Yingling
, “
Progress in molecular modelling of DNA materials
,”
Mol. Simul.
40
,
777
783
(
2014
).
30.
A. D.
MacKerell
et al, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
The Journal of Physical Chemistry B
102
,
3586
3616
(
1998
).
31.
J.
Yoo
and
A.
Aksimentiev
, “
Improved parameterization of amine-carboxylate and amine-phosphate interactions for molecular dynamics simulations using the charmm and amber force fields
,”
J. Chem. Theory Comput.
12
,
430
443
(
2016
).
32.
S.
Panigrahy
,
R.
Sahu
,
S. K.
Reddy
, and
D.
Nayar
, “
Structure, energetics and dynamics in crowded amino acid solutions: A molecular dynamics study
,”
Phys. Chem. Chem. Phys.
25
,
5430
5442
(
2023
).
33.
J.
Hautman
and
M. L.
Klein
, “
Simulation of a monolayer of alkyl thiol chains
,”
J. Chem. Phys.
91
,
4994
5001
(
1989
).
34.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
35.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh ewald: An nlog(n) method for ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
36.
A.
Ben-Naim
, “
Standard thermodynamics of transfer. Uses and misuses
,”
J. Phys. Chem.
82
,
792
803
(
1978
).
37.
T.
Lazaridis
, “
Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory
,”
J. Phys. Chem. B
102
,
3531
3541
(
1998
).
38.
T.
Lazaridis
, “
Inhomogeneous fluid approach to solvation thermodynamics. 2. Applications to simple fluids
,”
J. Phys. Chem. B
102
,
3542
3550
(
1998
).
39.
A.
Baranyai
and
D. J.
Evans
, “
Direct entropy calculation from computer simulation of liquids
,”
Phys. Rev. A
40
,
3817
3822
(
1989
).
40.
D. C.
Wallace
, “
On the role of density fluctuations in the entropy of a fluid
,”
J. Chem. Phys.
87
,
2282
2284
(
1987
).
41.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of solutions. I
,”
J. Chem. Phys.
19
,
774
777
(
1951
).
42.
V.
Pierce
,
M.
Kang
,
M.
Aburi
,
S.
Weerasinghe
, and
P.
Smith
, “
Recent applications of kirkwood-buff theory to biological systems
,”
Cell Biochem. Biophys.
50
,
1
22
(
2008
).
43.
Z.
Li
,
V. G.
Ruiz
,
M.
Kanduč
, and
J.
Dzubiella
, “
Ion-specific adsorption on bare gold (Au) nanoparticles in aqueous solutions: Double-layer structure and surface potentials
,”
Langmuir
36
,
13457
13468
(
2020
).
44.
Z.
Li
,
V. G.
Ruiz
,
M.
Kanduč
, and
J.
Dzubiella
, “
Highly heterogeneous polarization and solvation of gold nanoparticles in aqueous electrolytes
,”
ACS Nano
15
,
13155
13165
(
2021
).
45.
J.
Schlitter
, “
Estimation of absolute and relative entropies of macromolecules using the covariance matrix
,”
Chem. Phys. Lett.
215
,
617
621
(
1993
).
46.
P.
Ganguly
,
N. F. A.
van der Vegt
, and
van der Vegt
, “
Convergence of sampling kirkwood–buff integrals of aqueous solutions with molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
1347
1355
(
2013
).
47.
J.
Milzetti
,
D.
Nayar
, and
N. F.
Van Der Vegt
, “
Convergence of kirkwood-buff integrals of ideal and nonideal aqueous solutions using molecular dynamics simulations
,”
J. Phys. Chem. B
122
,
5515
5526
(
2018
).

Supplementary Material

You do not currently have access to this content.