To cope with the shuttling of soluble lithium polysulfides in lithium–sulfur batteries, confinement tactics, such as trapping of sulfur within porous carbon structures, have been extensively studied. Although performance has improved a bit, the slow polysulfide conversion inducing fast capacity decay remains a big challenge. Herein, a NiS2/carbon (NiS2/C) composite with NiS2 nanoparticles embedded in a thin layer of carbon over the surface of micro-sized hollow structures has been prepared from Ni-metal–organic frameworks. These unique structures can physically entrap sulfur species and also influence their redox conversion kinetics. By improving the reaction kinetics of polysulfides, the NiS2/carbon@sulfur (NiS2/C@S) composite cathode with a suppressed shuttle effect shows a high columbic efficiency and decent rate performance. An initial capacity of 900 mAh g−1 at the rate of 1 C (1 C = 1675 mA g−1) and a low-capacity decline rate of 0.132% per cycle after 500 cycles are obtained, suggesting that this work provides a rational design of a sulfur cathode.

1.
J.-H.
Shim
,
J.-M.
Han
,
J.-H.
Lee
, and
S.
Lee
, “
Mixed electronic and ionic conductor-coated cathode material for high-voltage lithium ion battery
,”
ACS Appl. Mater. Interfaces
8
(
19
),
12205
12210
(
2016
).
2.
H.-J.
Peng
,
J.-Q.
Huang
,
X.-Y.
Liu
,
X.-B.
Cheng
,
W.-T.
Xu
,
C.-Z.
Zhao
,
F.
Wei
, and
Q.
Zhang
, “
Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control
,”
J. Am. Chem. Soc.
139
(
25
),
8458
8466
(
2017
).
3.
H.-J.
Noh
,
S.-T.
Myung
,
H.-G.
Jung
,
H.
Yashiro
,
K.
Amine
, and
Y.-K.
Sun
, “
Formation of a continuous solid‐solution particle and its application to rechargeable lithium batteries
,”
Adv. Funct. Mater.
23
(
8
),
1028
1036
(
2013
).
4.
A.
Manthiram
,
Y.
Fu
,
S.-H.
Chung
,
C.
Zu
, and
Y.-S.
Su
, “
Rechargeable lithium–sulfur batteries
,”
Chem. Rev.
114
(
23
),
11751
11787
(
2014
).
5.
Y. V.
Mikhaylik
and
J. R.
Akridge
, “
Polysulfide shuttle study in the Li/S battery system
,”
J. Electrochem. Soc.
151
(
11
),
A1969
A1976
(
2004
).
6.
J.
Jiang
,
J.
Zhu
,
W.
Ai
,
X.
Wang
,
Y.
Wang
,
C.
Zou
,
W.
Huang
, and
T.
Yu
, “
Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells
,”
Nat. Commun.
6
,
8622
(
2015
).
7.
Y.-X.
Yin
,
S.
Xin
,
Y.-G.
Guo
, and
L.-J.
Wan
, “
Lithium–sulfur batteries: Electrochemistry, materials, and prospects
,”
Angew. Chem., Int. Ed.
52
(
50
),
13186
13200
(
2013
).
8.
X.
Ji
,
S.
Evers
,
R.
Black
, and
L. F.
Nazar
, “
Stabilizing lithium–sulphur cathodes using polysulphide reservoirs
,”
Nat. Commun.
2
,
325
(
2011
).
9.
G.
Zhou
,
L.
Li
,
D.-W.
Wang
,
X.-Y.
Shan
,
S.
Pei
,
F.
Li
, and
H.-M.
Cheng
, “
A flexible sulfur‐graphene‐polypropylene separator integrated electrode for advanced Li–S Batteries
,”
Adv. Mater.
27
(
4
),
641
647
(
2015
).
10.
C.
Zhao
,
L.
Liu
,
H.
Zhao
,
A.
Krall
,
Z.
Wen
,
J.
Chen
,
P.
Hurley
,
J.
Jiang
, and
Y.
Li
, “
Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium–sulfur batteries
,”
Nanoscale
6
(
2
),
882
888
(
2014
).
11.
S.
Moon
,
Y. H.
Jung
,
W. K.
Jung
,
D. S.
Jung
,
J. W.
Choi
, and
D. K.
Kim
, “
Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries
,”
Adv. Mater.
25
(
45
),
6547
6553
(
2013
).
12.
L.
Wang
,
X.
Li
,
Y.
Zhang
,
W.
Mao
,
Y.
Li
,
P. K.
Chu
,
A.
Kızılaslan
,
Z.
Zheng
, and
K.
Huo
, “
Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium–sulfur batteries
,”
Chem. Eng. J.
446
(
1
),
137050
(
2022
).
13.
Z.
Zhou
,
Z.
Chen
,
H.
Lv
,
Y.
Zhao
,
H.
Wei
,
G.
Huai
,
R.
Xu
, and
Y.
Wang
, “
High-entropy nanoparticle constructed porous honeycomb as a 3D sulfur host for lithium polysulfide adsorption and catalytic conversion in Li–S batteries
,”
J. Mater. Chem. A
11
,
5883
5894
(
2023
).
14.
Z.
Yuan
,
H.-J.
Peng
,
J.-Q.
Huang
,
X.-Y.
Liu
,
D.-W.
Wang
,
X.-B.
Cheng
, and
Q.
Zhang
, “
Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries
,”
Adv. Funct. Mater.
24
(
39
),
6105
6112
(
2014
).
15.
Y.
Fu
,
Y.-S.
Su
, and
A.
Manthiram
, “
Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes
,”
Angew. Chem., Int. Ed.
52
(
27
),
6930
6935
(
2013
).
16.
F.
Sun
,
J.
Wang
,
H.
Chen
,
W.
Qiao
,
L.
Ling
, and
D.
Long
, “
Bottom-up catalytic approach towards nitrogen-enriched mesoporous carbons/sulfur composites for superior Li–S cathodes
,”
Sci. Rep.
3
,
2823
(
2013
).
17.
Q.
Pang
,
D.
Kundu
,
M.
Cuisinier
, and
L. F.
Nazar
, “
Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries
,”
Nat. Commun.
5
,
4759
(
2014
).
18.
Q.
Qu
,
T.
Gao
,
H.
Zheng
,
Y.
Wang
,
X.
Li
,
X.
Li
,
J.
Chen
,
Y.
Han
,
J.
Shao
, and
H.
Zheng
, “
Strong surface‐bound sulfur in conductive MoO2 matrix for enhancing Li–S battery performance
,”
Adv. Mater. Interfaces
2
(
7
),
1500048
(
2015
).
19.
S. S.
Zhang
and
D. T.
Tran
, “
Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries
,”
J. Mater. Chem. A
4
(
12
),
4371
4374
(
2016
).
20.
Y.-J.
Li
,
J.-M.
Fan
,
M.-S.
Zheng
, and
Q.-F.
Dong
, “
A novel synergistic composite with multi-functional effects for high-performance Li–S batteries
,”
Energy Environ. Sci.
9
(
6
),
1998
2004
(
2016
).
21.
Z.
Li
,
C.
Li
,
X.
Ge
,
J.
Ma
,
Z.
Zhang
,
Q.
Li
,
C.
Wang
, and
L.
Yin
, “
Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries
,”
Nano Energy
23
,
15
26
(
2016
).
22.
X.
Zhang
,
Z.
Ni
,
X.
Bai
,
H.
Shen
,
Z.
Wang
,
C.
Wei
,
K.
Tian
,
B.
Xi
,
S.
Xiong
, and
J.
Feng
, “
Hierarchical porous N-doped carbon encapsulated fluorine-free MXene with tunable coordination chemistry by one-pot etching strategy for lithium–sulfur batteries
,”
Adv. Energy Mater.
13
(
29
),
2301349
(
2023
).
23.
C.
Qi
,
H.
Li
,
J.
Wang
,
C.
Zhao
,
C.
Fu
,
L.
Wang
, and
T.
Liu
, “
Metal-organic-framework-Derived porous carbon embedded with TiO2 nanoparticles as a cathode for advanced lithium–sulfur batteries
,”
ChemElectroChem
8
(
1
),
90
95
(
2021
).
24.
C.
Qi
,
L.
Xu
,
J.
Wang
,
H.
Li
,
C.
Zhao
,
L.
Wang
, and
T.
Liu
, “
Titanium-containing metal–organic framework modified separator for advanced lithium–sulfur batteries
,”
ACS Sustainable Chem. Eng.
8
(
34
),
12968
12975
(
2020
).
25.
D.
Senthil Raja
,
C.-C.
Cheng
,
Y.-C.
Ting
, and
S.-Y.
Lu
, “
NiMo-MOF-derived carbon-armored Ni4Mo alloy of an interwoven nanosheet structure as an outstanding pH-universal catalyst for hydrogen evolution reaction at high current densities
,”
ACS Appl. Mater. Interfaces
15
(
16
),
20130
20140
(
2023
).
26.
A. E.
Baumann
,
R. I.
Anayah
, and
V. S.
Thoi
, “
Phosphorus-functionalized organic linkers promote polysulfide retention in MOF-based Li–S batteries
,”
ACS Appl. Energy Mater.
5
(
12
),
15302
15309
(
2022
).
27.
Y.
Guo
,
J.
Li
,
G.
Yuan
,
J.
Guo
,
Y.
Zheng
,
Y.
Huang
,
Q.
Zhang
,
J.
Li
,
J.
Shen
,
C.
Shu
,
J.
Xu
,
Y.
Tang
,
W.
Lei
, and
H.
Shao
, “
Elucidating the volcanic-type catalytic behavior in lithium–sulfur batteries via defect engineering
,”
ACS Nano
17
(
18
),
18253
18265
(
2023
).
28.
F.
Zou
,
Y.-M.
Chen
,
K.
Liu
,
Z.
Yu
,
W.
Liang
,
S. M.
Bhaway
,
M.
Gao
, and
Y.
Zhu
, “
Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage
,”
ACS Nano
10
(
1
),
377
386
(
2016
).
29.
R.
Bi
,
C.
Zeng
,
H.
Huang
,
X.
Wang
, and
L.
Zhang
, “
Metal–organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage
,”
J. Mater. Chem. A
6
(
29
),
14077
14082
(
2018
).
30.
J.
Li
and
H. C.
Zeng
, “
Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening
,”
J. Am. Chem. Soc.
129
(
51
),
15839
15847
(
2007
).

Supplementary Material

You do not currently have access to this content.