The intrinsically low electrical conductivity and poor structural fragility of MnO2 have significantly hampered the zinc storage performance. In this work, Ba2+-implanted δ-MnO2 nanosheets have been hydrothermally grown on a carbon cloth (Ba–MnO2@CC) as an extremely stable and efficient cathode material of aqueous zinc-ion batteries. The three-dimensionally porous architecture composed of interwoven thin MnO2 nanosheets effectively shortens the electron/ion transport distances, enlarges the electrode/electrolyte contact area, and increases the active sites for the electrochemical reaction. Meanwhile, Ba2+ could function as an interlayer pillar to stabilize the crystal structure of MnO2. Consequently, the as-optimized Ba–MnO2@CC exhibits remarkable Zn2+ storage capabilities, such as a high capacity (305 mAh g−1 at 0.2 A g−1), prolonged lifespan (95% retention after a 200-cycling test), and superb rate capability. The binder-free cathode is also applicable for flexible energy storage devices with attractive properties. The present investigation provides important insights into designing advanced cathode materials toward wearable electronics.

1.
N.
Zhang
,
Y.-R.
Ji
,
J.-C.
Wang
,
P.-F.
Wang
,
Y.-R.
Zhu
, and
T.-F.
Yi
, “
Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: Reaction processes and regulation strategies
,”
J. Energy Chem.
82
,
423
463
(
2023
).
2.
Z. P.
Cano
,
D.
Banham
,
S.
Ye
,
A.
Hintennach
,
J.
Lu
,
M.
Fowler
, and
Z.
Chen
, “
Batteries and fuel cells for emerging electric vehicle markets
,”
Nat. Energy
3
(
4
),
279
289
(
2018
).
3.
X.
Wang
,
Z.
Zhang
,
B.
Xi
,
W.
Chen
,
Y.
Jia
,
J.
Feng
, and
S.
Xiong
, “
Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries
,”
ACS Nano
15
(
6
),
9244
9272
(
2021
).
4.
A.
Kwade
,
W.
Haselrieder
,
R.
Leithoff
,
A.
Modlinger
,
F.
Dietrich
, and
K.
Droeder
, “
Current status and challenges for automotive battery production technologies
,”
Nat. Energy
3
(
4
),
290
300
(
2018
).
5.
Y.
Zeng
,
Z.
Pei
,
D.
Luan
, and
X. W. D.
Lou
, “
Atomically dispersed zincophilic sites in N,P-codoped carbon macroporous fibers enable efficient Zn metal anodes
,”
J. Am. Chem. Soc.
145
(
22
),
12333
12341
(
2023
).
6.
P.
Xiong
,
C.
Lin
,
Y.
Wei
,
J.-H.
Kim
,
G.
Jang
,
K.
Dai
,
L.
Zeng
,
S.
Huang
,
S. J.
Kwon
,
S.-Y.
Lee
, and
H. S.
Park
, “
Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes
,”
ACS Energy Lett.
8
(
6
),
2718
2727
(
2023
).
7.
M.
Yang
,
Y.
Wang
,
D.
Ma
,
J.
Zhu
,
H.
Mi
,
Z.
Zhang
,
B.
Wu
,
L.
Zeng
,
M.
Chen
,
J.
Chen
, and
P.
Zhang
, “
Unlocking the interfacial adsorption-intercalation pseudocapacitive storage limit to enabling all-climate, high energy/power density and durable Zn-ion batteries
,”
Angew. Chem.
62
(
27
),
202304400
(
2023
).
8.
T.
Zhou
,
L.
Xie
,
Q.
Han
,
X.
Yang
,
L.
Zhu
, and
X.
Cao
, “
Investigation of Na6V10O28 as a promising rechargeable aqueous zinc-ion batteries cathode
,”
Chem. Eng. J.
445
,
136789
(
2022
).
9.
T.-B.
Song
,
Q.-L.
Ma
,
X.-R.
Zhang
,
J.-W.
Ni
,
T.-L.
He
, and
H.-M.
Xiong
, “
Zn anode surface engineering for stable zinc-ion batteries: Carbon dots incorporated mesoporous TiO2 as a coating layer
,”
Chem. Eng. J.
471
,
144735
(
2023
).
10.
H.
Wang
,
A.
Zhou
,
X.
Hu
,
Z.
Hu
,
F.
Zhang
,
Y.
Huang
,
L.
Li
,
F.
Wu
, and
R.
Chen
, “
Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries
,”
ACS Nano
17
(
12
),
11946
11956
(
2023
).
11.
P.
Cai
,
K.
Wang
,
X.
He
,
Q.
Li
,
Z.
Zhang
,
M.
Li
,
H.
Li
,
M.
Zhou
,
W.
Wang
, and
K.
Jiang
, “
Electric-field harmony in V2C/V2O5 heterointerfaces toward high-performance aqueous Zn-ion batteries
,”
Energy Storage Mater.
60
,
102835
(
2023
).
12.
B.
Fei
,
Z.
Liu
,
J.
Fu
,
X.
Guo
,
K.
Li
,
C.
Zhang
,
X.
Yang
,
D.
Cai
,
J.
Liu
, and
H.
Zhan
, “
In situ induced core-shell carbon-encapsulated amorphous vanadium oxide for ultra-long cycle life aqueous zinc-ion batteries
,”
Adv. Funct. Mater.
33
(
32
),
2215170
(
2023
).
13.
H.
Jia
,
Y.
Li
,
L.
Fu
,
U.
Ali
,
B.
Liu
,
L.
Zhang
,
H.
Wang
,
L.
Li
,
H. G.
Wang
, and
C.
Wang
, “
Ion pre-embedding engineering of δ-MnO2 for chemically self-charging aqueous zinc ions batteries
,”
Small
19
(
46
),
2303593
(
2023
).
14.
Y.
Liu
,
K.
Wang
,
X.
Yang
,
J.
Liu
,
X. X.
Liu
, and
X.
Sun
, “
Enhancing two-electron reaction contribution in MnO2 cathode material by structural engineering for stable cycling in aqueous Zn batteries
,”
ACS Nano
17
,
14792
14799
(
2023
).
15.
Y.
Li
,
J.
Zhao
,
Q.
Hu
,
T.
Hao
,
H.
Cao
,
X.
Huang
,
Y.
Liu
,
Y.
Zhang
,
D.
Lin
,
Y.
Tang
, and
Y.
Cai
, “
Prussian blue analogs cathodes for aqueous zinc ion batteries
,”
Mater. Today Energy
29
,
101095
(
2022
).
16.
Y.
Xu
,
X.
Deng
,
Q.
Li
,
G.
Zhang
,
F.
Xiong
,
S.
Tan
,
Q.
Wei
,
J.
Lu
,
J.
Li
,
Q.
An
, and
L.
Mai
, “
Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries
,”
Chem
5
(
5
),
1194
1209
(
2019
).
17.
N.
Zhang
,
F.
Cheng
,
Y.
Liu
,
Q.
Zhao
,
K.
Lei
,
C.
Chen
,
X.
Liu
, and
J.
Chen
, “
Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery
,”
J. Am. Chem. Soc.
138
(
39
),
12894
12901
(
2016
).
18.
Y.
Zhang
,
Y.
Liu
,
Z.
Liu
,
X.
Wu
,
Y.
Wen
,
H.
Chen
,
X.
Ni
,
G.
Liu
,
J.
Huang
, and
S.
Peng
, “
MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries
,”
J. Energy Chem.
64
,
23
32
(
2022
).
19.
J.
Wang
,
J. G.
Wang
,
X.
Qin
,
Y.
Wang
,
Z.
You
,
H.
Liu
, and
M.
Shao
, “
Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance
,”
ACS Appl. Mater. Interfaces
12
(
31
),
34949
34958
(
2020
).
20.
W.
Zhao
,
J.
Fee
,
H.
Khanna
,
S.
March
,
N.
Nisly
,
S. J. B.
Rubio
,
C.
Cui
,
Z.
Li
, and
S. L.
Suib
, “
A two-electron transfer mechanism of the Zn-doped δ-MnO2 cathode toward aqueous Zn-ion batteries with ultrahigh capacity
,”
J. Mater. Chem. A
10
(
12
),
6762
6771
(
2022
).
21.
M.
Lin
,
F.
Shao
,
Y.
Tang
,
H.
Lin
,
Y.
Xu
,
Y.
Jiao
, and
J.
Chen
, “
Layered Co doped MnO2 with abundant oxygen defects to boost aqueous zinc-ion storage
,”
J. Colloid Interface Sci.
611
,
662
669
(
2022
).
22.
Y.
Jiao
,
L.
Kang
,
J.
Berry-Gair
,
K.
McColl
,
J.
Li
,
H.
Dong
,
H.
Jiang
,
R.
Wang
,
F.
Corà
,
D. J. L.
Brett
,
G.
He
, and
I. P.
Parkin
, “
Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes
,”
J. Mater. Chem. A
8
(
42
),
22075
22082
(
2020
).
23.
Z.
Zhu
,
Z.
Lin
,
Z.
Sun
,
P.
Zhang
,
C.
Li
,
R.
Dong
, and
H.
Mi
, “
Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries
,”
Rare Met.
41
(
11
),
3729
3739
(
2022
).
24.
J.
Huang
,
Y.
Li
,
R.
Xie
,
J.
Li
,
Z.
Tian
,
G.
Chai
,
Y.
Zhang
,
F.
Lai
,
G.
He
,
C.
Liu
,
T.
Liu
, and
D. J. L.
Brett
, “
Structural engineering of cathodes for improved Zn-ion batteries
,”
J. Energy Chem.
58
,
147
155
(
2021
).
25.
X.
Li
,
J.
Qu
,
J.
Xu
,
S.
Zhang
,
X.
Wang
,
X.
Wang
, and
S.
Dai
, “
K-preintercalated MnO2 nanosheets as cathode for high-performance Zn-ion batteries
,”
J. Electroanal. Chem.
895
,
115529
(
2021
).
26.
J.
Peng
,
Y.
Chen
,
Y.
Huyan
,
N.
Li
, and
J.-G.
Wang
, “
Cu2+ intercalation boosts zinc energy reactivity of MnO2 with enhanced capacity and longevity
,”
Appl. Surf. Sci.
623
,
157060
(
2023
).
27.
H.
Li
,
C.
Han
,
Y.
Huang
,
Y.
Huang
,
M.
Zhu
,
Z.
Pei
,
Q.
Xue
,
Z.
Wang
,
Z.
Liu
,
Z.
Tang
,
Y.
Wang
,
F.
Kang
,
B.
Li
, and
C.
Zhi
, “
An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte
,”
Energy Environ. Sci.
11
(
4
),
941
951
(
2018
).
28.
J.
Wang
,
J. G.
Wang
,
H.
Liu
,
Z.
You
,
Z.
Li
,
F.
Kang
, and
B.
Wei
, “
A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries
,”
Adv. Funct. Mater.
31
(
7
),
2007397
(
2020
).
29.
Y.
Tian
,
Y.
An
,
C.
Liu
,
S.
Xiong
,
J.
Feng
, and
Y.
Qian
, “
Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries
,”
Energy Storage Mater.
41
,
343
353
(
2021
).
30.
P.
Man
,
B.
He
,
Q.
Zhang
,
Z.
Zhou
,
C.
Li
,
Q.
Li
,
L.
Wei
, and
Y.
Yao
, “
A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni-Zn batteries
,”
J. Mater. Chem. A
7
(
48
),
27217
27224
(
2019
).
31.
Q.
Chen
,
J.
Jin
,
Z.
Kou
,
C.
Liao
,
Z.
Liu
,
L.
Zhou
,
J.
Wang
, and
L.
Mai
, “
Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density
,”
Small
16
(
14
),
2000091
(
2020
).
32.
B.
Lin
,
X.
Zhu
,
L.
Fang
,
X.
Liu
,
S.
Li
,
T.
Zhai
,
L.
Xue
,
Q.
Guo
,
J.
Xu
, and
H.
Xia
, “
Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries
,”
Adv. Mater.
31
(
24
),
1900060
(
2019
).
33.
N.
Zarshad
,
A. U.
Rahman
,
J.
Wu
,
A.
Ali
,
F.
Raziq
,
L.
Han
,
P.
Wang
,
G.
Li
, and
H.
Ni
, “
Enhanced energy density and wide potential window for K incorporated MnO2@carbon cloth supercapacitor
,”
Chem. Eng. J.
415
,
128967
(
2021
).
34.
L.
Hu
,
R.
Gao
,
A.
Zhang
,
R.
Yang
,
X.
Zang
,
S.
Wang
,
S.
Yao
,
Z.
Yang
,
H.
Hao
, and
Y.-M.
Yan
, “
Cu2+ intercalation activates bulk redox reactions of MnO2 for enhancing capacitive performance
,”
Nano Energy
74
,
104891
(
2020
).
35.
H.
Xia
,
X.
Zhu
,
J.
Liu
,
Q.
Liu
,
S.
Lan
,
Q.
Zhang
,
X.
Liu
,
J. K.
Seo
,
T.
Chen
,
L.
Gu
, and
Y. S.
Meng
, “
A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage
,”
Nat. Commun.
9
(
1
),
5100
(
2018
).
36.
M.
Liu
,
X.
Hou
,
T.
Wang
,
Y.
Ma
,
K.
Sun
,
D.
Liu
,
Y.
Wang
,
D.
He
, and
J.
Li
, “
Rapid activation and enhanced cycling stability of Co3O4 microspheres decorated by N-doped amorphous carbon shell for advanced LIBs
,”
Electrochim. Acta
283
,
979
986
(
2018
).
37.
F.
Mo
,
G.
Liang
,
Z.
Huang
,
H.
Li
,
D.
Wang
, and
C.
Zhi
, “
An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties
,”
Adv. Mater.
32
(
5
),
1902151
(
2020
).
38.
D.
Chen
,
D.
Ding
,
X.
Li
,
G. H.
Waller
,
X.
Xiong
,
M. A.
El-Sayed
, and
M.
Liu
, “
Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy
,”
Chem. Mater.
27
(
19
),
6608
6619
(
2015
).
39.
C.
Ling
,
J.
Chen
, and
F.
Mizuno
, “
First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius
,”
J. Phys. Chem. C
117
(
41
),
21158
21165
(
2013
).
40.
H.
Liu
,
J.-G.
Wang
,
Z.
You
,
C.
Wei
,
F.
Kang
, and
B.
Wei
, “
Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives
,”
Mater. Today
42
,
73
98
(
2021
).
41.
J.
Peng
,
H.
Sun
,
Y.
Huyan
,
X.
Zhang
,
Y.
Gao
,
H.
Ma
, and
J.-G.
Wang
, “
Nanosheet architecture of MnO2/carbon with improved reaction kinetics toward advanced zinc energy storage
,”
J. Colloid Interface Sci.
654
,
1220
1227
(
2024
).
42.
X.
Peng
,
Y.
Li
,
F.
Kang
,
X.
Li
,
Z.
Zheng
, and
L.
Dong
, “
Negatively charged hydrophobic carbon nano-onion interfacial layer enabling high-rate and ultralong-life Zn-based energy storage
,”
Small
2305547
(
2023
).
43.
Y.
Li
,
X.
Peng
,
X.
Li
,
H.
Duan
,
S.
Xie
,
L.
Dong
, and
F.
Kang
, “
Functional ultrathin separators Proactively stabilizing zinc anodes for zinc-based energy storage
,”
Adv. Mater.
35
(
18
),
2300019
(
2023
).
44.
Z.
Liu
,
Q.
Yang
,
D.
Wang
,
G.
Liang
,
Y.
Zhu
,
F.
Mo
,
Z.
Huang
,
X.
Li
,
L.
Ma
,
T.
Tang
,
Z.
Lu
, and
C.
Zhi
, “
A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau
,”
Adv. Energy Mater.
9
(
46
),
1902473
(
2019
).
45.
Y.
Zhao
,
T.
Sun
,
Q.
Yin
,
J.
Zhang
,
S.
Zhang
,
J.
Luo
,
H.
Yan
,
L.
Zheng
,
J.
Han
, and
M.
Wei
, “
Discovery of a new intercalation-type anode for high-performance sodium ion batteries
,”
J. Mater. Chem. A
7
(
25
),
15371
15377
(
2019
).
46.
X.
Yun
,
T.
Lu
,
R.
Zhou
,
Z.
Lu
,
J.
Li
, and
Y.
Zhu
, “
Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism
,”
Chem. Eng. J.
426
,
131328
(
2021
).
47.
D.
Zhang
,
J.
Cao
,
X.
Zhang
,
N.
Insin
,
S.
Wang
,
J.
Han
,
Y.
Zhao
,
J.
Qin
, and
Y.
Huang
, “
Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery
,”
Adv. Funct. Mater.
31
(
14
),
2009412
(
2021
).
48.
H.
Geng
,
M.
Cheng
,
B.
Wang
,
Y.
Yang
,
Y.
Zhang
, and
C. C.
Li
, “
Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries
,”
Adv. Funct. Mater.
30
(
6
),
1907684
(
2019
).
49.
S.
Deng
,
Z.
Yuan
,
Z.
Tie
,
C.
Wang
,
L.
Song
, and
Z.
Niu
, “
Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries
,”
Angew. Chem., Int. Ed.
59
(
49
),
22002
22006
(
2020
).
50.
B.
Yong
,
D.
Ma
,
Y.
Wang
,
H.
Mi
,
C.
He
, and
P.
Zhang
, “
Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives
,”
Adv. Energy Mater.
10
(
45
),
2002354
(
2020
).
51.
T.
Xiong
,
Y.
Zhang
,
W. S. V.
Lee
, and
J.
Xue
, “
Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review
,”
Adv. Energy Mater.
10
(
34
),
2001769
(
2020
).
52.
H.
Zhang
,
Q.
Liu
,
J.
Wang
,
K.
Chen
,
D.
Xue
,
J.
Liu
, and
X.
Lu
, “
Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation
,”
J. Mater. Chem. A
7
(
38
),
22079
22083
(
2019
).
53.
I. A.
Rodríguez-Pérez
,
H. J.
Chang
,
M.
Fayette
,
B. M.
Sivakumar
,
D.
Choi
,
X.
Li
, and
D.
Reed
, “
Mechanistic investigation of redox processes in Zn-MnO2 battery in mild aqueous electrolytes
,”
J. Mater. Chem. A
9
(
36
),
20766
20775
(
2021
).
54.
H.
Yang
,
W.
Zhou
,
D.
Chen
,
J.
Liu
,
Z.
Yuan
,
M.
Lu
,
L.
Shen
,
V.
Shulga
,
W.
Han
, and
D.
Chao
, “
The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: A Mn-based competitive capacity evolution protocol
,”
Energy Environ. Sci.
15
(
3
),
1106
1118
(
2022
).
55.
Q.
Liu
,
Z.
Yu
,
Q.
Zhuang
,
J.-K.
Kim
,
F.
Kang
, and
B.
Zhang
, “
Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries
,”
Adv. Mater.
35
(
36
),
2300498
(
2023
).

Supplementary Material

You do not currently have access to this content.