This paper describes an attempt to test directly the supposition that the high values for the tensile strengths of liquids as found by the Berthelot method are due to the trace of air ordinarily present in the Berthelot tube. A method is described for preparing Berthelot tubes in an evacuated system, using water from which air had been carefully removed. Measurements with these air‐free tubes yielded 32 atmospheres as the average maximum hydrostatic tension that water can withstand. This value for the maximum tension is shown to be in good accord with evidence adduced recently by other investigators.

1.
A. F.
Scott
and
M.
Pound
,
J. Chem. Phys.
9
,
726
(
1941
).
2.
R. S.
Vincent
,
Nature
145
,
970
(
1940
);
R. S.
Vincent
,
Proc. Phys. Phys. Soc. London
53
,
126
(
1941
).
3.
J. Meyer, Abhand. d. Deutschen‐Bunsen Gesell. No. 6 (1911).
4.
For reviews of this question, see References 2, 5, 6, and 7.
5.
R. S.
Vincent
and
G. H.
Simmonds
,
Proc. Phys. Soc. London
55
,
376
(
1943
).
6.
H. N. V.
Temperley
,
Proc. Phys. Soc. London
58
,
436
(
1946
).
7.
H. N. V.
Temperley
, and
L. G.
Chambers
,
Proc. Phys. Soc. London
58
,
420
(
1946
).
8.
R. K.
Taylor
,
J. Am. Chem. Soc.
50
,
2937
(
1928
).
9.
A.
Stock
,
Ber.
47
,
3109
(
1914
).
10.
R. K.
Taylor
,
J. Am. Chem. Soc.
52
,
3576
(
1930
).
11.
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, Teddington, England, 1927), p. 142.
12.
N. E. Dorsey, Properties of Ordinary Water Substance (Reinhold Publishing Corporation, New York, 1940).
This content is only available via PDF.
You do not currently have access to this content.