The dynamics of wire frame particles in concentrated suspension are studied by means of a 2D model and compared to those of rod-like particles. The wire frames have bent or branched structures constructed from infinitely thin, rigid rods. In the model, a particle is surrounded by diffusing points that it cannot cross. We derive a formal expression for the mean squared displacement (MSD) and, by using a self-consistent approximation, we find markedly different dynamics for wire frames and rods. For wire frames, there exists a critical concentration of points above which they become frozen with the long time MSD reaching a plateau. Rods, on the other hand, always diffuse by reptation. We also study the rheology through the elastic stress, and more striking differences are found: the initial magnitude of the stress for wire frames is much larger than for rods, scaling such as the square of the point concentration, and above the critical concentration, the stress for wire frames appears to persist indefinitely while for rods it always decays.

1.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
2.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
1996
).
3.
J. A.
Leegwater
and
G.
Szamel
, “
Long- and ultimate-time tails in two-dimensional fluids
,”
Phys. Rev. A
45
,
1270
1273
(
1992
).
4.
J. A.
Leegwater
and
G.
Szamel
, “
Dynamical properties of hard-sphere suspensions
,”
Phys. Rev. A
46
,
4999
5011
(
1992
).
5.
G.
Szamel
and
J. A.
Leegwater
, “
Long-time self-diffusion coefficients of suspensions
,”
Phys. Rev. A
46
,
5012
5019
(
1992
).
6.
A.
Einstein
, “
Eine neue Bestimmung der Molekül-dimensionen
,”
Ann. Phys.
324
,
289
(
1906
).
7.
A.
Einstein
, “
Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekül-dimensionen
,”
Ann. Phys.
339
,
591
(
1911
).
8.
G. K.
Batchelor
and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
9.
V.
Trappe
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
, “
Jamming phase diagram for attractive particles
,”
Nature
411
,
772
775
(
2001
).
10.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics. With Special Applications to Particulate Media
(
Noordhoff International Publishing
,
1973
).
11.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Dover Publications
,
2005
).
12.
M.
Makino
and
M.
Doi
, “
Brownian motion of a particle of general shape in Newtonian fluid
,”
J. Phys. Soc. Jpn.
73
,
2739
2745
(
2004
).
13.
M.
Makino
and
M.
Doi
, “
Viscoelasticity of dilute solutions of particles of general shape
,”
J. Phys. Soc. Jpn.
73
,
3020
3025
(
2004
).
14.
S. B.
Dubin
,
J. H.
Lunacek
, and
G. B.
Benedek
, “
Observation of the spectrum of light scattered by solutions of biological macromolecules
,”
Proc. Natl. Acad. Sci.
57
,
1164
1171
(
1967
).
15.
N.
Nemoto
,
J. L.
Schrag
,
J. D.
Ferry
, and
R. W.
Fulton
, “
Infinite-dilution viscoelastic properties of tobacco mosaic virus
,”
Biopolymers
14
,
409
417
(
1975
).
16.
T.
Nicolai
and
S.
Cocard
, “
Light scattering study of the dispersion of laponite
,”
Langmuir
16
,
8189
8193
(
2000
).
17.
N. C.
Seeman
, “
Nucleic acid junctions and lattices
,”
J. Theor. Biol.
99
,
237
247
(
1982
).
18.
P. W.
Rothemund
, “
Folding DNA to create nanoscale shapes and patterns
,”
Nature
440
,
297
302
(
2006
).
19.
D.
Han
,
S.
Pal
,
J.
Nangreave
,
Z.
Deng
,
Y.
Liu
, and
H.
Yan
, “
DNA origami with complex curvatures in three-dimensional space
,”
Science
332
,
342
346
(
2011
).
20.
C. E.
Castro
,
F.
Kilchherr
,
D. N.
Kim
,
E. L.
Shiao
,
T.
Wauer
,
P.
Wortmann
,
M.
Bathe
, and
H.
Dietz
, “
A primer to scaffolded DNA origami
,”
Nat. Methods
8
,
221
229
(
2011
).
21.
S. F.
Edwards
, “
Statistical mechanics with topological constraints: I
,”
Proc. Phys. Soc.
91
,
513
519
(
1967
).
22.
S. F.
Edwards
, “
Statistical mechanics with topological constraints: II
,”
J. Phys. A: Gen. Phys.
1
,
15
(
1968
).
23.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1986
).
24.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
25.
M.
Doi
, “
Rotational relaxation time of rigid rod-like macromolecule in concentrated solution
,”
J. Phys.
36
,
607
611
(
1975
).
26.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of rod-like macromolecules in concentrated solution. Part 1
,”
J. Chem. Soc., Faraday Trans. 2
74
,
560
(
1978
).
27.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of rod-like macromolecules in concentrated solution. Part 2
,”
J. Chem. Soc., Faraday Trans. 2
74
,
918
(
1978
).
28.
P. G.
De Gennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
579
(
1971
).
29.
Z.
Xing
,
A.
Caciagli
,
T.
Cao
,
I.
Stoev
,
M.
Zupkauskas
,
T.
O’Neill
,
T.
Wenzel
,
R.
Lamboll
,
D.
Liu
, and
E.
Eiser
, “
Microrheology of DNA hydrogels
,”
Proc. Natl. Acad. Sci.
115
,
8137
8142
(
2018
).
30.
S.
Biffi
,
R.
Cerbino
,
F.
Bomboi
,
E. M.
Paraboschi
,
R.
Asselta
,
F.
Sciortino
, and
T.
Bellini
, “
Phase behavior and critical activated dynamics of limited-valence DNA nanostars
,”
Proc. Natl. Acad. Sci.
110
,
15633
15637
(
2013
).
31.
P.
Gross
,
N.
Laurens
,
L. B.
Oddershede
,
U.
Bockelmann
,
E. J.
Peterman
, and
G. J.
Wuite
, “
Quantifying how DNA stretches, melts and changes twist under tension
,”
Nat. Phys.
7
,
731
736
(
2011
).
32.
W.
Van Ketel
,
C.
Das
, and
D.
Frenkel
, “
Structural arrest in an ideal gas
,”
Phys. Rev. Lett.
94
,
135703
(
2005
).
33.
D. R.
Heine
,
M. K.
Petersen
, and
G. S.
Grest
, “
Effect of particle shape and charge on bulk rheology of nanoparticle suspensions
,”
J. Chem. Phys.
132
,
184509
(
2010
).
34.
M. K.
Petersen
,
J. M. D.
Lane
, and
G. S.
Grest
, “
Shear rheology of extended nanoparticles
,”
Phys. Rev. E
82
,
010201
(
2010
).
35.
D. A.
King
,
M.
Doi
, and
E.
Eiser
, “
Elastic response of wire frame glasses. I. Two dimensional model
,”
J. Chem. Phys.
154
,
244904
(
2021
).
36.
D. A.
King
,
M.
Doi
, and
E.
Eiser
, “
Elastic response of wire frame glasses. II. Three-dimensional systems
,”
J. Chem. Phys.
154
,
244905
(
2021
).
37.
S.
Yardimci
,
T.
Gibaud
,
W.
Schwenger
,
M. R.
Sartucci
,
P. D.
Olmsted
,
J. S.
Urbach
, and
Z.
Dogic
, “
Bonded straight and helical flagellar filaments form ultra-low-density glasses
,”
Proc. Natl. Acad. Sci.
120
,
e2215766120
(
2023
).
38.
B.
Cichocki
, “
The generalized Smoluchowski equation for interacting Brownian particles with hard cores
,”
Z. Phys. B: Condens. Matter
66
,
537
540
(
1987
).
39.
R.
Schilling
and
G.
Szamel
, “
Microscopic theory for the glass transition in a system without static correlations
,”
Europhys. Lett.
61
,
207
213
(
2003
).
40.
D. M.
Sussman
and
K. S.
Schweizer
, “
Microscopic theory of topologically entangled fluids of rigid macromolecules
,”
Phys. Rev. E
83
,
061501
(
2011
).
41.
G.
Szamel
, “
Reptation as a dynamic mean-field theory: Study of a simple model of rodlike polymers
,”
Phys. Rev. Lett.
70
,
3744
3747
(
1993
).
42.
G.
Szamel
and
K. S.
Schweizer
, “
Reptation as a dynamic mean-field theory: Self and tracer diffusion in a simple model of rodlike polymers
,”
J. Chem. Phys.
100
,
3127
3141
(
1994
).
43.
D. R.
Reichman
and
P.
Charbonneau
, “
Mode-coupling theory
,”
J. Stat. Mech.: Theory Exp.
2005
,
P05013
.
44.
M.
Fuchs
and
M. E.
Cates
, “
A mode coupling theory for Brownian particles in homogeneous steady shear flow
,”
J. Rheol.
53
,
957
1000
(
2009
).
45.
K.
Miyazaki
and
A.
Yethiraj
, “
Entanglement effects in mode coupling theories of polymers
,”
J. Chem. Phys.
117
,
10448
10451
(
2002
).
46.
S. F.
Edwards
and
K. E.
Evans
, “
Dynamics of highly entangled rod-like molecules
,”
J. Chem. Soc., Faraday Trans. 2
78
,
113
121
(
1982
).
47.
S. F.
Edwards
and
T.
Vilgis
, “
The dynamics of the glass transition
,”
Phys. Scr.
1986
(
T13
),
7
16
.
48.
I.
Teraoka
and
R.
Hayakawa
, “
Theory of dynamics of entangled rod-like polymers by use of a mean-field Green function formulation. I. Transverse diffusion
,”
J. Chem. Phys.
89
,
6989
6995
(
1988
).
49.
I.
Teraoka
and
R.
Hayakawa
, “
Theory of dynamics of entangled rod-like polymers by use of a mean-field Green function formulation. II. Rotational diffusion
,”
J. Chem. Phys.
91
,
2643
2648
(
1989
).
50.
I.
Teraoka
and
F. E.
Karasz
, “
One-dimensional diffusion with stochastic random barriers
,”
Phys. Rev. A
45
,
5426
5446
(
1992
).
51.
I.
Teraoka
and
F. E.
Karasz
, “
Glass transition and dynamic-mobility spectrum of an isotropic system of rodlike molecules
,”
Phys. Rev. E
47
,
1108
1118
(
1993
).
52.
J.-P.
Bouchaud
,
L.
Cugliandolo
,
J.
Kurchan
, and
M.
Mézard
, “
Mode-coupling approximations, glass theory and disordered systems
,”
Physica A
226
,
243
273
(
1996
).
53.
D.
Frenkel
and
J. F.
Maguire
, “
Molecular dynamics study of the dynamical properties of an assembly of infinitely thin hard rods
,”
Mol. Phys.
49
,
503
541
(
1983
).
54.
D.
Frenkel
and
J. F.
Maguire
, “
Molecular dynamics study of infinitely thin hard rods: Scaling behavior of transport properties
,”
Phys. Rev. Lett.
47
,
1025
1028
(
1981
).
55.
S. F.
Edwards
, “
Exact formulae for inverse transport coefficients
,”
Proc. Phys. Soc.
86
,
977
988
(
1965
).
56.
D. A.
King
,
M.
Doi
, and
E.
Eiser
, “
Particle shapes leading to Newtonian dilute suspensions
,”
Phys. Rev. E
102
,
032615
(
2020
).
57.
D. A.
King
, “
Effects of particle shape and flexibility on suspension dynamics
,” Ph.D. thesis,
University of Cambridge
,
2021
.
58.
J. G.
Kirkwood
, “
The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco-elastic behavior
,”
Recl. Trav. Chim. Pays-Bas
68
,
649
660
(
2010
).
59.
J. G.
Kirkwood
, “
The general theory of irreversible processes in solutions of macromolecules
,”
J. Polym. Sci.
12
,
1
14
(
1954
).
60.
M.
Fixman
, “
Stress relaxation in polymer melts and concentrated solutions
,”
J. Chem. Phys.
95
,
1410
1413
(
1991
).
61.
M.
Muthukumar
and
S. F.
Edwards
, “
Screening of hydrodynamic interaction in a solution of rodlike macromolecules
,”
Macromolecules
16
,
1475
1478
(
1983
).
62.
S. F.
Edwards
and
K. F.
Freed
, “
Theory of the dynamical viscosity of polymer solutions
,”
J. Chem. Phys.
61
,
1189
1202
(
1974
).
63.
K. F.
Freed
and
S. F.
Edwards
, “
Polymer viscosity in concentrated solutions
,”
J. Chem. Phys.
61
,
3626
3633
(
1974
).
64.
G. H.
Fredrickson
and
E. S.
Shaqfeh
, “
Heat and mass transport in composites of aligned slender fibers
,”
Phys. Fluids A
1
,
3
20
(
1989
).
65.
E. S. G.
Shaqfeh
and
G. H.
Fredrickson
, “
The hydrodynamic stress in a suspension of rods
,”
Phys. Fluids A
2
,
7
24
(
1990
).
66.
A.
Chakrabarty
,
A.
Konya
,
F.
Wang
,
J. V.
Selinger
,
K.
Sun
, and
Q. H.
Wei
, “
Brownian motion of boomerang colloidal particles
,”
Phys. Rev. Lett.
111
,
160603
(
2013
).
67.
A.
Chakrabarty
,
A.
Konya
,
F.
Wang
,
J. V.
Selinger
,
K.
Sun
, and
Q. H.
Wei
, “
Brownian motion of arbitrarily shaped particles in two dimensions
,”
Langmuir
30
,
13844
13853
(
2014
).
68.
J. A.
Ulbrich
,
C.
Fernández-Rico
,
B.
Rost
,
J.
Vialetto
,
L.
Isa
,
J. S.
Urbach
, and
R. P.
Dullens
, “
Effect of curvature on the diffusion of colloidal bananas
,”
Phys. Rev. E
107
,
L042602
(
2023
).
69.
M.
Bixon
and
R.
Zwanzig
, “
Diffusion in a medium with static traps
,”
J. Chem. Phys.
75
,
2354
2356
(
1981
).
70.
T. R.
Kirkpatrick
, “
Time dependent transport in a fluid with static traps
,”
J. Chem. Phys.
76
,
4255
4259
(
1982
).
71.
P.
Grassberger
and
I.
Procaccia
, “
The long time properties of diffusion in a medium with static traps
,”
J. Chem. Phys.
77
,
6281
6284
(
1982
).
72.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover Publications
,
New York City
,
1964
).
73.
E. T.
Copson
,
Asymptotic Expansions
, edited by
F.
Smithies
and
J. A.
Todd
(
Cambridge University Press
,
1965
).
You do not currently have access to this content.