Uncovering slow collective variables (CVs) of self-assembly dynamics is important to elucidate its numerous kinetic assembly pathways and drive the design of novel structures for advanced materials through the bottom-up approach. However, identifying the CVs for self-assembly presents several challenges. First, self-assembly systems often consist of identical monomers, and the feature representations should be invariant to permutations and rotational symmetries. Physical coordinates, such as aggregate size, lack high-resolution detail, while common geometric coordinates like pairwise distances are hindered by the permutation and rotational symmetry challenges. Second, self-assembly is usually a downhill process, and the trajectories often suffer from insufficient sampling of backward transitions that correspond to the dissociation of self-assembled structures. Popular dimensionality reduction methods, such as time-structure independent component analysis, impose detailed balance constraints, potentially obscuring the true dynamics of self-assembly. In this work, we employ GraphVAMPnets, which combines graph neural networks with a variational approach for Markovian process (VAMP) theory to identify the slow CVs of the self-assembly processes. First, GraphVAMPnets bears the advantages of graph neural networks, in which the graph embeddings can represent self-assembly structures in high-resolution while being invariant to permutations and rotational symmetries. Second, it is built upon VAMP theory, which studies Markov processes without forcing detailed balance constraints, which addresses the out-of-equilibrium challenge in the self-assembly process. We demonstrate GraphVAMPnets for identifying slow CVs of self-assembly kinetics in two systems: the aggregation of two hydrophobic molecules and the self-assembly of patchy particles. We expect that our GraphVAMPnets can be widely applied to molecular self-assembly.

1.
D.
Philp
and
J. F.
Stoddart
, “
Self-assembly in natural and unnatural systems
,”
Angew Chem. Int. Ed. Engl.
35
,
1154
1196
(
1996
).
2.
G. M.
Whitesides
and
B.
Grzybowski
, “
Self-assembly at all scales
,”
Science
295
,
2418
2421
(
2002
).
3.
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
, and
D. J.
Pine
, “
Lock and key colloids
,”
Nature
464
(
7288
),
575
578
(
2010
).
4.
E.
Duguet
et al, “
Design and elaboration of colloidal molecules: An overview
,”
Chem. Soc. Rev.
40
,
941
960
(
2011
).
5.
Y.
Wang
et al, “
Colloids with valence and specific directional bonding
,”
Nature
491
(
7422
),
51
55
(
2012
).
6.
A. H.
Gröschel
et al, “
Guided hierarchical co-assembly of soft patchy nanoparticles
,”
Nature
503
(
7475
),
247
251
(
2013
).
7.
S.
Whitelam
et al, “
Common physical framework explains phase behavior and dynamics of atomic, molecular, and polymeric network formers
,”
Phys. Rev. X
4
,
011044
(
2014
).
8.
V. W. W.
Yam
,
V. K. M.
Au
, and
S. Y. L.
Leung
, “
Light-emitting self-assembled materials based on d8 and d10 transition metal complexes
,”
Chem. Rev.
115
,
7589
7728
(
2015
).
9.
S.
Conti
and
M.
Cecchini
, “
Predicting molecular self-assembly at surfaces: A statistical thermodynamics and modeling approach
,”
Phys. Chem. Chem. Phys.
18
,
31480
31493
(
2016
).
10.
S.
Conti
et al, “
Perchlorination of coronene enhances its propensity for self-assembly on graphene
,”
ChemPhysChem
17
,
330
357
(
2016
).
11.
C. A.
Palma
,
M.
Cecchini
, and
P.
Samorí
, “
Predicting self-assembly: From empirism to determinism
,”
Chem. Soc. Rev.
41
,
3713
3730
(
2012
).
12.
S.
Haar
et al, “
A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids
,”
Small
11
,
1691
1702
(
2015
).
13.
S.
Bonacchi
et al, “
Surface-induced selection during in situ photoswitching at the solid/liquid interface
,”
Angew. Chem., Int. Ed.
54
,
4865
4869
(
2015
).
14.
D. M.
Packwood
,
P.
Han
, and
T.
Hitosugi
, “
Chemical and entropic control on the molecular self-assembly process
,”
Nat. Commun.
8
(
1
),
14463
(
2017
).
15.
S.
Conti
and
M.
Cecchini
, “
Accurate and efficient calculation of the desorption energy of small molecules from graphene
,”
J. Phys. Chem. C
119
,
1867
1879
(
2015
).
16.
B.
Liu
,
Y.
Qiu
,
E. C.
Goonetilleke
, and
X.
Huang
, “
Kinetic network models to study molecular self-assembly in the wake of machine learning
,”
MRS Bull.
47
,
958
(
2022
).
17.
X.
Zeng
,
L.
Zhu
,
X.
Zheng
,
M.
Cecchini
, and
X.
Huang
, “
Harnessing complexity in molecular self-assembly using computer simulations
,”
Phys. Chem. Chem. Phys.
20
,
6767
6776
(
2018
).
18.
J.
Wang
,
K.
Liu
,
R.
Xing
, and
X.
Yan
, “
Peptide self-assembly: Thermodynamics and kinetics
,”
Chem. Soc. Rev.
45
,
5589
5604
(
2016
).
19.
Y.
Mai
and
A.
Eisenberg
, “
Self-assembly of block copolymers
,”
Chem. Soc. Rev.
41
,
5969
5985
(
2012
).
20.
X.
Zheng
et al, “
Elucidation of the key role of Pt⋯Pt interactions in the directional self-assembly of platinum(II) complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2116543119
(
2022
).
21.
S. O.
Nielsen
,
C. F.
Lopez
,
G.
Srinivas
, and
M. L.
Klein
, “
Coarse grain models and the computer simulation of soft materials
,”
J. Phys.: Condens. Matter
16
,
R481
(
2004
).
22.
D. T.
Allen
and
C. D.
Lorenz
, “
Molecular scale simulations of the self-assembly of amphiphilic molecules: Current state-of-the-art and future directions
,”
J. Self-Assem. Mol. Electron.
3
,
1
38
(
2016
).
23.
J. H.
Prinz
et al, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
24.
R. D.
Malmstrom
,
C. T.
Lee
,
A. T.
Van Wart
, and
R. E.
Amaro
, “
Application of molecular-dynamics based Markov state models to functional proteins
,”
J. Chem. Theory Comput.
10
,
2648
2657
(
2014
).
25.
K. A.
Konovalov
,
I. C.
Unarta
,
S.
Cao
,
E. C.
Goonetilleke
, and
X.
Huang
, “
Markov state models to study the functional dynamics of proteins in the wake of machine learning
,”
JACS Au
1
,
1330
1341
(
2021
).
26.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
, “
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
,”
J. Chem. Phys.
126
,
155101
(
2007
).
27.
A. C.
Pan
and
B.
Roux
, “
Building Markov state models along pathways to determine free energies and rates of transitions
,”
J. Chem. Phys.
129
,
064107
(
2008
).
28.
N.-V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
29.
L.
Zhang
et al, “
Elucidation of the dynamics of transcription elongation by RNA polymerase II using kinetic network models
,”
Acc. Chem. Res.
49
,
687
694
(
2016
).
30.
H.
Jiang
et al, “
Markov state models reveal a two-step mechanism of miRNA loading into the human argonaute protein: Selective binding followed by structural re-arrangement
,”
PLoS Comput. Biol.
11
,
e1004404
(
2015
).
31.
C. R.
Schwantes
and
V. S.
Pande
, “
Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
,”
J. Chem. Theory Comput.
9
,
2000
2009
(
2013
).
32.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
33.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
, “
VAMPnets for deep learning of molecular kinetics
,”
Nat. Commun.
9
(
1
),
5
(
2018
).
34.
W.
Chen
,
H.
Sidky
, and
A. L.
Ferguson
, “
Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets
,”
J. Chem. Phys.
150
,
214114
(
2019
).
35.
R. R.
Coifman
et al, “
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
7426
7431
(
2005
).
36.
A. L.
Ferguson
,
A. Z.
Panagiotopoulos
,
I. G.
Kevrekidis
, and
P. G.
Debenedetti
, “
Nonlinear dimensionality reduction in molecular simulation: The diffusion map approach
,”
Chem. Phys. Lett.
509
,
1
11
(
2011
).
37.
Y.
Zhao
,
F. K.
Sheong
,
J.
Sun
,
P.
Sander
, and
X.
Huang
, “
A fast parallel clustering algorithm for molecular simulation trajectories
,”
J. Comput. Chem.
34
,
95
104
(
2013
).
38.
T. F.
Gonzalez
, “
Clustering to minimize the maximum intercluster distance
,”
Theor. Comput. Sci.
38
,
293
306
(
1985
).
39.
D.
Sculley
, “
Web-scale k-means clustering
,” in
Proceedings of the 19th International Conference on World Wide Web, WWW’10
(
Association for Computing Machinery
,
2010
), pp.
1177
1178
.
40.
A.
Rodriguez
and
A.
Laio
, “
Clustering by fast search and find of density peaks
,”
Science
344
,
1492
1496
(
2014
).
41.
P.
Deuflhard
and
M.
Weber
, “
Robust Perron cluster analysis in conformation dynamics
,”
Linear Algebra Appl.
398
,
161
184
(
2005
).
42.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
, “
Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains
,”
Linear Algebra Appl.
315
,
39
59
(
2000
).
43.
S.
Röblitz
and
M.
Weber
, “
Fuzzy spectral clustering by PCCA+: Application to Markov state models and data classification
,”
Adv. Data Anal. Classif.
7
,
147
179
(
2013
).
44.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
45.
W.
E
and
E.
Vanden-Eijnden
, “
Towards a theory of transition paths
,”
J. Stat. Phys.
123
(
3
),
503
523
(
2006
).
46.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
, “
Transition path theory for Markov jump processes
,”
Multiscale Model. Simul.
7
,
1192
1219
(
2009
).
47.
C.
Li
,
Z.
Liu
,
E. C.
Goonetilleke
, and
X.
Huang
, “
Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation
,”
Nat. Commun.
12
,
4954
(
2021
).
48.
X.
Zeng
et al, “
Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways
,”
Phys. Chem. Chem. Phys.
20
,
10030
10037
(
2018
).
49.
X.
Tang
et al, “
Optimal feedback controlled assembly of perfect crystals
,”
ACS Nano
10
,
6791
6798
(
2016
).
50.
X.
Tang
,
M. A.
Bevan
, and
M. A.
Grover
, “
The construction and application of Markov state models for colloidal self-assembly process control
,”
Mol. Syst. Des. Eng.
2
,
78
88
(
2017
).
51.
X.
Zeng
et al, “
Elucidating dominant pathways of the nano-particle self-assembly process
,”
Phys. Chem. Chem. Phys.
18
,
23494
23499
(
2016
).
52.
X.
Zheng
et al, “
Kinetics-controlled amphiphile self-assembly processes
,”
J. Phys. Chem. Lett.
8
,
1798
1803
(
2017
).
53.
J.
Weng
,
M.
Yang
,
W.
Wang
,
X.
Xu
, and
Z.
Tian
, “
Revealing thermodynamics and kinetics of lipid self-assembly by Markov state model analysis
,”
J. Am. Chem. Soc.
142
,
21344
21352
(
2020
).
54.
K.
Imamura
,
T.
Yamamoto
, and
H.
Sato
, “
Coarse-grained modeling of nanocube self-assembly system and transition network analyses
,”
Chem. Phys. Lett.
742
,
137135
(
2020
).
55.
M.
Ghorbani
,
S.
Prasad
,
J. B.
Klauda
, and
B. R.
Brooks
, “
GraphVAMPNet, using graph neural networks and variational approach to Markov processes for dynamical modeling of biomolecules
,”
J. Chem. Phys.
156
,
184103
(
2022
).
56.
T.
Xie
,
A.
France-Lanord
,
Y.
Wang
,
Y.
Shao-Horn
, and
J. C.
Grossman
, “
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
,”
Nat. Commun.
10
,
2667
(
2019
).
57.
H.
Wu
and
F.
Noé
, “
Variational approach for learning Markov processes from time series data
,”
J. Nonlinear Sci.
30
,
23
66
(
2020
).
58.
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
, “
SchNet: A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
59.
A.
Mardt
,
L.
Pasquali
,
F.
Noé
, and
H.
Wu
, “
Deep learning Markov and Koopman models with physical constraints
,”
Proc. Mach. Learn. Res.
107
,
451
475
(
2020
).
60.
Z.-W.
Li
,
Y.-L.
Zhu
,
Z.-Y.
Lu
, and
Z.-Y.
Sun
, “
Supracolloidal fullerene-like cages: Design principles and formation mechanisms
,”
Phys. Chem. Chem. Phys.
18
,
32534
32540
(
2016
).
61.
Z.-W.
Li
,
Y.-L.
Zhu
,
Z.-Y.
Lu
, and
Z.-Y.
Sun
, “
A versatile model for soft patchy particles with various patch arrangements
,”
Soft Matter
12
,
741
749
(
2016
).
62.
A.
Mardt
,
T.
Hempel
,
C.
Clementi
, and
F.
Noé
, “
Deep learning to decompose macromolecules into independent Markovian domains
,”
Nat. Commun.
13
,
7101
(
2022
).
63.
H.
Pei
,
B.
Wei
,
K. C.-C.
Chang
,
Y.
Lei
, and
B.
Yang
, “
Geom-GCN: Geometric graph convolutional networks
,” in International Conference on Learning Representations 2020 (OpenReview.net, 2020); arXiv:2002.05287 (
2020
).

Supplementary Material

You do not currently have access to this content.