Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.

1.
C.
Sun
,
R.
Zhou
,
Z.
Zhao
, and
B.
Bai
, “
Nanoconfined fluids: What can we expect from them?
,”
J. Phys. Chem. Lett.
11
,
4678
4692
(
2020
).
2.
J. A.
Thomas
and
A. J.
McGaughey
, “
Reassessing fast water transport through carbon nanotubes
,”
Nano Lett.
8
,
2788
2793
(
2008
).
3.
K.
Wu
,
Z.
Chen
,
J.
Li
,
X.
Li
,
J.
Xu
, and
X.
Dong
, “
Wettability effect on nanoconfined water flow
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3358
3363
(
2017
).
4.
A.
Barati Farimani
and
N. R.
Aluru
, “
Spatial diffusion of water in carbon nanotubes: From Fickian to ballistic motion
,”
J. Phys. Chem. B
115
,
12145
12149
(
2011
).
5.
G. J.
Wang
and
N. G.
Hadjiconstantinou
, “
Layered fluid structure and anomalous diffusion under nanoconfinement
,”
Langmuir
34
,
6976
6982
(
2018
).
6.
Z.
Cao
and
A.
Barati Farimani
, “
The diffusion mechanism of water in conductive metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
24
,
24852
24859
(
2022
).
7.
A.
Barati Farimani
and
N. R.
Aluru
, “
Existence of multiple phases of water at nanotube interfaces
,”
J. Phys. Chem. C
120
,
23763
23771
(
2016
).
8.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
, “
Phase transitions induced by nanoconfinement in liquid water
,”
Phys. Rev. Lett.
102
,
050603
(
2009
).
9.
S.
Mondal
and
B.
Bagchi
, “
How different are the dynamics of nanoconfined water?
,”
J. Chem. Phys.
152
,
224707
(
2020
).
10.
M.
Hu
,
J. V.
Goicochea
,
B.
Michel
, and
D.
Poulikakos
, “
Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces
,”
Nano Lett.
10
,
279
285
(
2010
).
11.
J.
Pan
,
S.
Xiao
,
Z.
Zhang
,
N.
Wei
,
J.
He
, and
J.
Zhao
, “
Nanoconfined water dynamics in multilayer graphene nanopores
,”
J. Phys. Chem. C
124
,
17819
17828
(
2020
).
12.
A.
Rojano
,
A.
Córdoba
,
J. H.
Walther
, and
H. A.
Zambrano
, “
Effect of charge inversion on nanoconfined flow of multivalent ionic solutions
,”
Phys. Chem. Chem. Phys.
24
,
4935
4943
(
2022
).
13.
Y.
Qiu
,
J.
Ma
, and
Y.
Chen
, “
Ionic behavior in highly concentrated aqueous solutions nanoconfined between discretely charged silicon surfaces
,”
Langmuir
32
,
4806
4814
(
2016
).
14.
M.
Masuduzzaman
and
B.
Kim
, “
Unraveling the molecular interface and boundary problems in an electrical double layer and electroosmotic flow
,”
Langmuir
38
,
7244
7255
(
2022
).
15.
D. J.
Bonthuis
,
S.
Gekle
, and
R. R.
Netz
, “
Dielectric profile of interfacial water and its effect on double-layer capacitance
,”
Phys. Rev. Lett.
107
,
166102
(
2011
).
16.
J.
Tan
,
Z.
Li
,
M.
Ye
, and
J.
Shen
, “
Nanoconfined space: Revisiting the charge storage mechanism of electric double layer capacitors
,”
ACS Appl. Mater. Interfaces
14
,
37259
37269
(
2022
).
17.
Y.
Wang
,
H.
Chen
,
J.
Jiang
, and
J.
Zhai
, “
‘Ion pool’ structural ion storage device: A new strategy to collect ions by nanoconfinement effects
,”
Small
17
,
2102880
(
2021
).
18.
Y.
Nakayama
and
D.
Andelman
, “
Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement
,”
J. Chem. Phys.
142
,
044706
(
2015
).
19.
Y.
Burak
,
D.
Andelman
, and
H.
Orland
, “
Test-charge theory for the electric double layer
,”
Phys. Rev. E
70
,
016102
(
2004
).
20.
A. G.
Moreira
and
R. R.
Netz
, “
Counterions at charge-modulated substrates
,”
Europhys. Lett.
57
,
911
(
2002
).
21.
R.
Qiao
and
N. R.
Aluru
, “
Charge inversion and flow reversal in a nanochannel electro-osmotic flow
,”
Phys. Rev. Lett.
92
,
198301
(
2004
).
22.
A.
Alizadeh
,
W.-L.
Hsu
,
M.
Wang
, and
H.
Daiguji
, “
Electroosmotic flow: From microfluidics to nanofluidics
,”
Electrophoresis
42
,
834
868
(
2021
).
23.
J.
Qian
,
X.
Gao
, and
B.
Pan
, “
Nanoconfinement-mediated water treatment: From fundamental to application
,”
Environ. Sci. Technol.
54
,
8509
8526
(
2020
).
24.
Z.
Cao
,
V.
Liu
, and
A.
Barati Farimani
, “
Water desalination with two-dimensional metal–organic framework membranes
,”
Nano Lett.
19
,
8638
8643
(
2019
).
25.
Y.
Wang
,
Z.
Cao
, and
A.
Barati Farimani
, “
Efficient water desalination with graphene nanopores obtained using artificial intelligence
,”
npj 2D Mater Appl.
5
,
66
(
2021
).
26.
L.
Mei
,
Z.
Cao
,
T.
Ying
,
R.
Yang
,
H.
Peng
,
G.
Wang
,
L.
Zheng
,
Y.
Chen
,
C. Y.
Tang
,
D.
Voiry
,
H.
Wang
,
A. B.
Farimani
, and
Z.
Zeng
, “
Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving
,”
Adv. Mater.
34
,
2201416
(
2022
).
27.
Z.
Cao
,
V.
Liu
, and
A.
Barati Farimani
, “
Why is single-layer MoS2 a more energy efficient membrane for water desalination?
,”
ACS Energy Lett.
5
,
2217
2222
(
2020
).
28.
Z.
Cao
,
G.
Markey
, and
A.
Barati Farimani
, “
Ozark graphene nanopore for efficient water desalination
,”
J. Phys. Chem. B
125
,
11256
11263
(
2021
).
29.
H.
Zhu
,
Y.
Wang
,
Y.
Fan
,
J.
Xu
, and
C.
Yang
, “
Structure and transport properties of water and hydrated ions in nano-confined channels
,”
Adv. Theory Simul.
2
,
1900016
(
2019
).
30.
J.
Kong
,
Z.
Bo
,
H.
Yang
,
J.
Yang
,
X.
Shuai
,
J.
Yan
, and
K.
Cen
, “
Temperature dependence of ion diffusion coefficients in nacl electrolyte confined within graphene nanochannels
,”
Phys. Chem. Chem. Phys.
19
,
7678
7688
(
2017
).
31.
J. B.
Freund
, “
Electro-osmosis in a nanometer-scale channel studied by atomistic simulation
,”
J. Chem. Phys.
116
,
2194
2200
(
2002
).
32.
P.
Kékicheff
,
S.
Marcelja
,
T.
Senden
, and
V.
Shubin
, “
Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte
,”
J. Chem. Phys.
99
,
6098
6113
(
1993
).
33.
C.
Sendner
,
D.
Horinek
,
L.
Bocquet
, and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion
,”
Langmuir
25
,
10768
10781
(
2009
).
34.
R.
Qiao
and
N.
Aluru
, “
Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube
,”
Nano Lett.
3
,
1013
1017
(
2003
).
35.
P.
Robin
,
A.
Delahais
,
L.
Bocquet
, and
N.
Kavokine
, “
Ion filling of a one-dimensional nanofluidic channel in the interaction confinement regime
,”
J. Chem. Phys.
158
,
124703
(
2023
)..
36.
K.
Meidani
,
Z.
Cao
, and
A.
Barati Farimani
, “
Titanium carbide MXene for water desalination: A molecular dynamics study
,”
ACS Appl. Nano Mater.
4
,
6145
6151
(
2021
).
37.
R.
Qiao
and
N. R.
Aluru
, “
Ion concentrations and velocity profiles in nanochannel electroosmotic flows
,”
J. Chem. Phys.
118
,
4692
4701
(
2003
).
38.
K.
Zhou
and
Z.
Xu
, “
Field-enhanced selectivity in nanoconfined ionic transport
,”
Nanoscale
12
,
6512
6521
(
2020
).
39.
N.
Schwierz
,
D.
Horinek
, and
R. R.
Netz
, “
Reversed anionic hofmeister series: The interplay of surface charge and surface polarity
,”
Langmuir
26
,
7370
7379
(
2010
).
40.
N.
Schwierz
and
R. R.
Netz
, “
Effective interaction between two ion-adsorbing plates: Hofmeister series and salting-in/salting-out phase diagrams from a global mean-field analysis
,”
Langmuir
28
,
3881
3886
(
2012
).
41.
N.
Schwierz
,
D.
Horinek
, and
R. R.
Netz
, “
Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces
,”
Langmuir
29
,
2602
2614
(
2013
).
42.
R. R.
Netz
, “
Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory
,”
Eur. Phys. J. E
5
,
557
574
(
2001
).
43.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
, “
Adsorption of large ions from an electrolyte solution: A modified Poisson–Boltzmann equation
,”
Electrochim. Acta
46
,
221
229
(
2000
).
44.
A.
Levy
,
D.
Andelman
, and
H.
Orland
, “
Dipolar Poisson-Boltzmann approach to ionic solutions: A mean field and loop expansion analysis
,”
J. Chem. Phys.
139
,
164909
(
2013
).
45.
A.
Abrashkin
,
D.
Andelman
, and
H.
Orland
, “
Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces
,”
Phys. Rev. Lett.
99
,
077801
(
2007
).
46.
T.
Markovich
,
D.
Andelman
, and
H.
Orland
, “
Ionic profiles close to dielectric discontinuities: Specific ion-surface interactions
,”
J. Chem. Phys.
145
,
134704
(
2016
).
47.
D.
Ben-Yaakov
and
D.
Andelman
, “
Revisiting the Poisson–Boltzmann theory: Charge surfaces, multivalent ions and inter-plate forces
,”
Physica A
389
,
2956
2961
(
2010
).
48.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid. Mech.
52
,
477
508
(
2020
).
49.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
,
3932
3937
(
2016
).
50.
M.
Cranmer
,
A.
Sanchez Gonzalez
,
P.
Battaglia
,
R.
Xu
,
K.
Cranmer
,
D.
Spergel
, and
S.
Ho
, “
Discovering symbolic models from deep learning with inductive biases
,”
Adv. Neural Inf. Process. Syst.
33
,
17429
17442
(
2020
).
51.
K.
Meidani
and
A.
Barati Farimani
, “
Identification of parametric dynamical systems using integer programming
,”
Expert Syst. Appl.
219
,
119622
(
2023
).
52.
A.
Davies
,
P.
Veličković
,
L.
Buesing
,
S.
Blackwell
,
D.
Zheng
,
N.
Tomašev
,
R.
Tanburn
,
P.
Battaglia
,
C.
Blundell
, and
A.
Juhász
, “
Advancing mathematics by guiding human intuition with AI
,”
Nature
600
,
70
74
(
2021
).
53.
Z.
Li
,
K.
Meidani
,
P.
Yadav
, and
A.
Barati Farimani
, “
Graph neural networks accelerated molecular dynamics
,”
J. Chem. Phys.
156
,
144103
(
2022
).
54.
A.
Moradzadeh
,
H.
Oliaei
, and
N. R.
Aluru
, “
Topology-based phase identification of bulk, interface, and confined water using an edge-conditioned convolutional graph neural network
,”
J. Phys. Chem. C
127
,
2612
(
2023
).
55.
H.
Wu
and
N.
Aluru
, “
Deep learning-based quasi-continuum theory for structure of confined fluids
,”
J. Chem. Phys.
157
,
084121
(
2022
).
56.
J. E.
Santos
,
M.
Mehana
,
H.
Wu
,
M.
Prodanovic
,
Q.
Kang
,
N.
Lubbers
,
H.
Viswanathan
, and
M. J.
Pyrcz
, “
Modeling nanoconfinement effects using active learning
,”
J. Phys. Chem. C
124
,
22200
22211
(
2020
).
57.
N.
Lubbers
,
A.
Agarwal
,
Y.
Chen
,
S.
Son
,
M.
Mehana
,
Q.
Kang
,
S.
Karra
,
C.
Junghans
,
T. C.
Germann
, and
H. S.
Viswanathan
, “
Modeling and scale-bridging using machine learning: Nanoconfinement effects in porous media
,”
Sci. Rep.
10
,
13312
(
2020
).
58.
C. J.
Leverant
,
J. A.
Harvey
,
T. M.
Alam
, and
J. A.
Greathouse
, “
Machine learning self-diffusion prediction for Lennard-Jones fluids in pores
,”
J. Phys. Chem. C
125
,
25898
25906
(
2021
).
59.
B.
Hanin
, “
Universal function approximation by deep neural nets with bounded width and ReLU activations
,”
Mathematics
7
,
992
(
2019
).
60.
F.
Scarselli
and
A.
Chung Tsoi
, “
Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
,”
Neural Networks
11
,
15
37
(
1998
).
61.
Y.
Lu
and
J.
Lu
, “
A universal approximation theorem of deep neural networks for expressing probability distributions
,”
Adv. Neural Inf. Process. Syst.
33
,
3094
3105
(
2020
).
62.
M.
Magdon-Ismail
and
A.
Atiya
, “
Neural networks for density estimation
,” in Advances in Neural Information Processing Systems, edited by M. Kearns, S. Solla, and D. Cohn (MIT Press, 1998), Vol. 11.
63.
Q.
Liu
,
J.
Xu
,
R.
Jiang
, and
W. H.
Wong
, “
Density estimation using deep generative neural networks
,”
Proc. Natl. Acad. Sci.
118
,
e2101344118
(
2021
).
64.
J.
Rothfuss
,
F.
Ferreira
,
S.
Walther
, and
M.
Ulrich
, “
Conditional density estimation with neural networks: Best practices and benchmarks
,” arXiv:1903.00954 (
2019
).
65.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
66.
H.
Bekker
,
H.
Berendsen
,
E.
Dijkstra
,
S.
Achterop
,
R.
Vondrumen
,
D.
Vanderspoel
,
A.
Sijbers
,
H.
Keegstra
, and
M.
Renardus
, “
Gromacs—A parallel computer for molecular-dynamics simulations
,” in
4th International Conference on Computational Physics (PC 92)
(
World Scientific Publishing
,
1993
), pp.
252
256
.
67.
A.
Schlaich
,
A. P.
Dos Santos
, and
R. R.
Netz
, “
Simulations of nanoseparated charged surfaces reveal charge-induced water reorientation and non-additivity of hydration and mean-field electrostatic repulsion
,”
Langmuir
35
,
551
560
(
2018
).
68.
I. S.
Joung
and
T. E.
Cheatham
III
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
69.
K. M.
Callahan
,
N. N.
Casillas-Ituarte
,
M.
Roeselová
,
H. C.
Allen
, and
D. J.
Tobias
, “
Solvation of magnesium dication: Molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions
,”
J. Phys. Chem. A
114
,
5141
5148
(
2010
).
70.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Physi.
117
,
1
19
(
1995
).
71.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
,
9954
9960
(
2001
).
72.
Y.
Chan
and
J.
Hill
, “
Modelling interaction of atoms and ions with graphene
,”
Micro Nano Lett.
5
,
247
250
(
2010
).
73.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
74.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
75.
R. T.
McGibbon
,
K. A.
Beauchamp
,
M. P.
Harrigan
,
C.
Klein
,
J. M.
Swails
,
C. X.
Hernández
,
C. R.
Schwantes
,
L.-P.
Wang
,
T. J.
Lane
, and
V. S.
Pande
, “
MDTraj: A modern open library for the analysis of molecular dynamics trajectories
,”
Biophys. J.
109
,
1528
1532
(
2015
).
76.
I.
Gühring
,
M.
Raslan
, and
G.
Kutyniok
, “
Expressivity of deep neural networks
,” in Mathematical Aspects of Deep Learning, edited by P. Grohs and G. Kutyniok (Cambridge University Press, 2022) pp. 149–199.
77.
B.
Poole
,
S.
Lahiri
,
M.
Raghu
,
J.
Sohl-Dickstein
, and
S.
Ganguli
, “
Exponential expressivity in deep neural networks through transient chaos
,” in Advances in Neural Information Processing Systems, edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Curran Associates, Inc., 2016), Vol. 29.
78.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
79.
G. E.
Hinton
and
R. R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
,
504
507
(
2006
).
80.
A. L.
Maas
,
A. Y.
Hannun
,
A. Y.
Ng
et al, “
Rectifier nonlinearities improve neural network acoustic models
,” in
Proceedings of ICML 2023
(
Atlanta
,
GA, USA
,
2013
),
Vol. 30
, p.
3
.
81.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
82.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
83.
T.
Chen
and
C.
Guestrin
, “
XGBoost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining
(
Association for Computing Machinery
,
2016
) pp.
785
794
.
84.
L.
Mason
,
J.
Baxter
,
P.
Bartlett
, and
M.
Frean
, “
Boosting algorithms as gradient descent
,” in Advances in Neural Information Processing Systems, edited by S. Solla, T. Leen, and K. Müller (MIT Press, 1999), Vol. 12.
85.
G.
Ke
,
Q.
Meng
,
T.
Finley
,
T.
Wang
,
W.
Chen
,
W.
Ma
,
Q.
Ye
, and
T.-Y.
Liu
, “
LightGBM: A highly efficient gradient boosting decision tree
,” in Advances in Neural Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017), Vol. 30.
86.
C. R.
Harris
,
K. J.
Millman
,
S. J.
Van Der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
, and
N. J.
Smith
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
87.
S.
Van Der Walt
,
S. C.
Colbert
, and
G.
Varoquaux
, “
The NumPy array: A structure for efficient numerical computation
,”
Comput. Sci. Eng.
13
,
22
30
(
2011
).
88.
C.
Williams
and
C.
Rasmussen
, “
Gaussian processes for regression
,” in Advances in Neural Information Processing Systems, edited by D. Touretzky, M. Mozer, and M. Hasselmo (MIT Press, 1995), Vol. 8.
You do not currently have access to this content.