The fluid–solid interfacial tension is of great importance to many applications including the geological storage of greenhouse gases and enhancing the recovery of geo-resources, but it is rarely studied. Extensive molecular dynamics simulations are conducted to calculate fluid–solid interfacial properties in H2O + gas (H2, N2, CH4, and CO2) + rigid solid three-phase systems at various temperatures (298–403 K), pressures (0–100 MPa), and wettabilities (hydrophilic, neutral, and hydrophobic). Our results on the H2O + solid system show that vapor–solid interfacial tension should not be ignored in cases where the fluid–solid interaction energy is strong or the contact angle is close to 90°. As the temperature rises, the magnitude of H2O’s liquid–solid interfacial tension declines because the oscillation of the interfacial density/pressure profile weakens at high temperatures. However, the magnitude of H2O vapor–solid interfacial tension is enhanced with temperature due to the stronger adsorption of H2O. Moreover, the H2O–solid interfacial tension in H2O + gas (H2 or N2) + solid systems is weakly dependent on pressure, while the pressure effects on H2O–solid interfacial tensions in systems with CH4 or CO2 are significant. We show that the assumption of pressure independent H2O–solid interfacial tensions should be cautiously applied to Neumann’s method for systems containing non-hydrophilic surfaces with strong gas–solid interaction. Meanwhile, the magnitude of gas–solid interfacial tension increases with pressure and gas–solid interaction. High temperatures generally decrease the magnitude of gas–solid interfacial tensions. Further, we found that the increment of contact angle due to the presence of gases follows this order: H2 < N2 < CH4 < CO2.

1.
J.
Gibbins
and
H.
Chalmers
, “
Carbon capture and storage
,”
Energy Policy
36
,
4317
4322
(
2008
).
2.
S.
Bachu
, “
CO2 storage in geological media: Role, means, status and barriers to deployment
,”
Prog. Energy Combust. Sci.
34
,
254
273
(
2008
).
3.
K. S.
Lackner
, “
A guide to CO2 sequestration
,”
Science
300
,
1677
1678
(
2003
).
4.
B.
Jia
,
J.-S.
Tsau
, and
R.
Barati
, “
A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs
,”
Fuel
236
,
404
427
(
2019
).
5.
Z.
Li
,
H.
Xu
, and
C.
Zhang
, “
Liquid nitrogen gasification fracturing technology for shale gas development
,”
J. Pet. Sci. Eng.
138
,
253
256
(
2016
).
6.
X.
Du
,
M.
Gu
,
Z.
Liu
,
Y.
Zhao
,
F.
Sun
, and
T.
Wu
, “
Enhanced shale gas recovery by the injections of CO2, N2, and CO2/N2 mixture gases
,”
Energy Fuels
33
,
5091
5101
(
2019
).
7.
R.
Tarkowski
, “
Underground hydrogen storage: Characteristics and prospects
,”
Renewable Sustainable Energy Rev.
105
,
86
94
(
2019
).
8.
W.
Lu
,
M.
Su
,
B. D.
Fath
,
M.
Zhang
, and
Y.
Hao
, “
A systematic method of evaluation of the Chinese natural gas supply security
,”
Appl. Energy
165
,
858
867
(
2016
).
9.
B.
Pan
,
X.
Yin
,
Y.
Ju
, and
S.
Iglauer
, “
Underground hydrogen storage: Influencing parameters and future outlook
,”
Adv. Colloid Interface Sci.
294
,
102473
(
2021
).
10.
J.
Liu
,
S.
Wang
,
F.
Javadpour
,
Q.
Feng
, and
L.
Cha
, “
Hydrogen diffusion in clay slit: Implications for the geological storage
,”
Energy Fuels
36
,
7651
7660
(
2022
).
11.
R.
Cui
,
S. M.
Hassanizadeh
, and
S.
Sun
, “
Pore-network modeling of flow in shale nanopores: Network structure, flow principles, and computational algorithms
,”
Earth-Sci. Rev.
234
,
104203
(
2022
).
12.
D. N.
Espinoza
and
J. C.
Santamarina
, “
Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage
,”
Water Resour. Res.
46
,
07537
, (
2010
).
13.
C.
Chalbaud
,
M.
Robin
,
J.
Lombard
,
F.
Martin
,
P.
Egermann
, and
H.
Bertin
, “
Interfacial tension measurements and wettability evaluation for geological CO2 storage
,”
Adv. Water Resour.
32
,
98
109
(
2009
).
14.
C.
Agbalaka
,
A. Y.
Dandekar
,
S. L.
Patil
,
S.
Khataniar
, and
J. R.
Hemsath
, “
The effect of wettability on oil recovery: A review
,” in
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
2008
.
15.
Y.
Feng
,
K.
Haugen
, and
A.
Firoozabadi
, “
Phase-field simulation of hydraulic fracturing by CO2, water and nitrogen in 2D and comparison with laboratory data
,”
J. Geophys. Res.: Solid Earth
126
,
e2021JB022509
, (
2021
).
16.
T.
Wu
and
A.
Firoozabadi
, “
Effect of fluids on the critical energy release rate of typical components in shale and andesite by molecular simulations
,”
J. Chem. Phys.
157
,
044701
(
2022
).
17.
M.
Hosseini
,
J.
Fahimpour
,
M.
Ali
,
A.
Keshavarz
, and
S.
Iglauer
, “
H2- brine interfacial tension as a function of salinity, temperature, and pressure; implications for hydrogen geo-storage
,”
J. Pet. Sci. Eng.
213
,
110441
(
2022
).
18.
Y. F.
Chow
,
G. C.
Maitland
, and
J. M.
Trusler
, “
Erratum to ‘interfacial tensions of (H2O + H2) and (H2O + CO2 + H2) systems at temperatures of (298 to 448) K and pressures up to 45 MPa’ [Fluid Phase Equilb. 475, 37–44 (2018)]
,”
Fluid Phase Equilib.
503
,
112315
(
2020
).
19.
W.
Yan
,
G.-Y.
Zhao
,
G.-J.
Chen
, and
T.-M.
Guo
, “
Interfacial tension of (methane + nitrogen) + water and (carbon dioxide + nitrogen) + water systems
,”
J. Chem. Eng. Data
46
,
1544
1548
(
2001
).
20.
M.
Hosseini
,
M.
Ali
,
J.
Fahimpour
,
A.
Keshavarz
, and
S.
Iglauer
, “
Basalt-H2-brine wettability at geo-storage conditions: Implication for hydrogen storage in basaltic formations
,”
J. Energy Storage
52
,
104745
(
2022
).
21.
A.
Ameri
,
N. S.
Kaveh
,
E.
Rudolph
,
K.-H.
Wolf
,
R.
Farajzadeh
, and
J.
Bruining
, “
Investigation on interfacial interactions among crude oil–brine–sandstone rock–CO2 by contact angle measurements
,”
Energy Fuels
27
,
1015
1025
(
2013
).
22.
B.
Pan
,
C.
Gong
,
X.
Wang
,
Y.
Li
, and
S.
Iglauer
, “
The interfacial properties of clay-coated quartz at reservoir conditions
,”
Fuel
262
,
116461
(
2020
).
23.
B.
Pan
,
X.
Yin
, and
S.
Iglauer
, “
Rock-fluid interfacial tension at subsurface conditions: Implications for H2, CO2 and natural gas geo-storage
,”
Int. J. Hydrogen Energy
46
,
25578
25585
(
2021
).
24.
M.
Ali
,
B.
Pan
,
N.
Yekeen
,
S.
Al-Anssari
,
A.
Al-Anazi
,
A.
Keshavarz
,
S.
Iglauer
, and
H.
Hoteit
, “
Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage
,”
Int. J. Hydrogen Energy
47
,
14104
14120
(
2022
).
25.
Y.
Djikaev
and
E.
Ruckenstein
, “
Self-consistent determination of the ice–air interfacial tension and ice–water–air line tension from experiments on the freezing of water droplets
,”
J. Phys. Chem. C
121
,
16432
16439
(
2017
).
26.
G. A.
Parks
, “
Surface and interfacial free energies of quartz
,”
J. Geophys. Res.: Solid Earth
89
,
3997
4008
, (
1984
).
27.
A. I.
Bailey
and
S. M.
Kay
, “
A direct measurement of the influence of vapour, of liquid and of oriented monolayers on the interfacial energy of mica
,”
Proc. R. Soc. London, Ser. A
301
,
47
56
(
1967
).
28.
P. M.
Claesson
,
C. E.
Blom
,
P. C.
Herder
, and
B. W.
Ninham
, “
Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica
,”
J. Colloid Interface Sci.
114
,
234
242
(
1986
).
29.
D.
Li
and
A.
Neumann
, “
Equation of state for interfacial tensions of solid-liquid systems
,”
Adv. Colloid Interface Sci.
39
,
299
345
(
1992
).
30.
M.
Arif
,
A.
Barifcani
, and
S.
Iglauer
, “
Solid/CO2 and solid/water interfacial tensions as a function of pressure, temperature, salinity and mineral type: Implications for CO2-wettability and CO2 geo-storage
,”
Int. J. Greenhouse Gas Control
53
,
263
273
(
2016
).
31.
M.
Hosseini
,
M.
Ali
,
J.
Fahimpour
,
A.
Keshavarz
, and
S.
Iglauer
, “
Assessment of rock-hydrogen and rock-water interfacial tension in shale, evaporite and basaltic rocks
,”
J. Nat. Gas Sci. Eng.
106
,
104743
(
2022
).
32.
H.
Abdulelah
,
A.
Al-Yaseri
,
M.
Ali
,
A.
Giwelli
,
B. M.
Negash
, and
M.
Sarmadivaleh
, “
CO2/Basalt’s interfacial tension and wettability directly from gas density: Implications for Carbon Geo-sequestration
,”
J. Pet. Sci. Eng.
204
,
108683
(
2021
).
33.
C.
Miqueu
,
J. M.
Miguez
,
M. M.
Pineiro
,
T.
Lafitte
, and
B.
Mendiboure
, “
Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties
,”
J. Phys. Chem. B
115
,
9618
9625
(
2011
).
34.
L. C.
Nielsen
,
I. C.
Bourg
, and
G.
Sposito
, “
Predicting CO2–water interfacial tension under pressure and temperature conditions of geologic CO2 storage
,”
Geochim. Cosmochim. Acta
81
,
28
38
(
2012
).
35.
Y.
Yang
,
M. F. A.
Che Ruslan
, and
S.
Sun
, “
Study of interfacial properties of water + methane + oil three-phase systems by a simple molecular simulation protocol
,”
J. Mol. Liq.
356
,
118951
(
2022
).
36.
C.
Chen
,
B.
Dong
,
N.
Zhang
,
W.
Li
, and
Y.
Song
, “
Pressure and temperature dependence of contact angles for CO2/water/silica systems predicted by molecular dynamics simulations
,”
Energy Fuels
30
,
5027
5034
(
2016
).
37.
C. M.
Tenney
and
R. T.
Cygan
, “
Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles
,”
Environ. Sci. Technol.
48
,
2035
2042
(
2014
).
38.
Y.
Yang
,
M. F. A.
Che Ruslan
,
W.
Zhu
,
G.
Zhao
, and
S.
Sun
, “
Interfacial behaviors of the H2O + CO2 + CH4 + C10H22 system in three phase equilibrium: A combined molecular dynamics simulation and density gradient theory investigation
,”
J. Mol. Liq.
370
,
121031
(
2023
).
39.
J.
Liu
,
Q.
Tang
,
J.
Kou
,
D.
Xu
,
T.
Zhang
, and
S.
Sun
, “
A quantitative study on the approximation error and speed-up of the multi-scale MCMC (Monte Carlo Markov chain) method for molecular dynamics
,”
J. Comput. Phys.
469
,
111491
(
2022
).
40.
G. J.
Gloor
,
G.
Jackson
,
F. J.
Blas
, and
E.
de Miguel
, “
Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials
,”
J. Chem. Phys.
123
,
134703
(
2005
).
41.
F.
Leroy
,
D. J.
Dos Santos
, and
F.
Müller-Plathe
, “
Interfacial excess free energies of solid–liquid interfaces by molecular dynamics simulation and thermodynamic integration
,”
Macromol. Rapid Commun.
30
,
864
870
(
2009
).
42.
H.
Jiang
,
F.
Müller-Plathe
, and
A. Z.
Panagiotopoulos
, “
Contact angles from Young’s equation in molecular dynamics simulations
,”
J. Chem. Phys.
147
,
084708
(
2017
).
43.
F.
Leroy
and
F.
Müller-Plathe
, “
Dry-surface simulation method for the determination of the work of adhesion of solid–liquid interfaces
,”
Langmuir
31
,
8335
8345
(
2015
).
44.
X.
Qi
,
Y.
Zhou
, and
K. A.
Fichthorn
, “
Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces
,”
J. Chem. Phys.
145
,
194108
(
2016
).
45.
A. R.
Nair
and
S. P.
Sathian
, “
A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM)
,”
J. Chem. Phys.
137
,
084702
(
2012
).
46.
H.
d’Oliveira
,
X.
Davoy
,
E.
Arche
,
P.
Malfreyt
, and
A.
Ghoufi
, “
Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability
,”
J. Chem. Phys.
146
,
214112
(
2017
).
47.
T.
Wu
and
A.
Firoozabadi
, “
Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics simulations
,”
J. Phys. Chem. A
125
,
5841
5848
(
2021
).
48.
J.
Fan
,
J.
De Coninck
,
H.
Wu
, and
F.
Wang
, “
Microscopic origin of capillary force balance at contact line
,”
Phys. Rev. Lett.
124
,
125502
(
2020
).
49.
J.
Fan
,
J.
De Coninck
,
H.
Wu
, and
F.
Wang
, “
A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems
,”
J. Colloid Interface Sci.
585
,
320
327
(
2021
).
50.
Z.
Jin
and
A.
Firoozabadi
, “
Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations
,”
J. Chem. Phys.
143
,
104315
(
2015
).
51.
S.
Wang
,
F.
Javadpour
, and
Q.
Feng
, “
Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale
,”
Fuel
181
,
741
758
(
2016
).
52.
K.
Mosher
,
J.
He
,
Y.
Liu
,
E.
Rupp
, and
J.
Wilcox
, “
Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems
,”
Int. J. Coal Geol.
109-110
,
36
44
(
2013
).
53.
S.
Wang
,
Y.
Liang
,
Q.
Feng
, and
F.
Javadpour
, “
Sticky layers affect oil transport through the nanopores of realistic shale kerogen
,”
Fuel
310
,
122480
(
2022
).
54.
F.
Taherian
,
V.
Marcon
,
N. F.
van der Vegt
, and
F.
Leroy
, “
What is the contact angle of water on graphene?
,”
Langmuir
29
,
1457
1465
(
2013
).
55.
A.
Silvestri
,
E.
Ataman
,
A.
Budi
,
S.
Stipp
,
J. D.
Gale
, and
P.
Raiteri
, “
Wetting properties of the CO2-water-calcite system via molecular simulations: Shape and size effects
,”
Langmuir
35
,
16669
16678
(
2019
).
56.
A.
Firoozabadi
,
Thermodynamics and Applications in Hydrocarbon Energy Production
(
McGraw-Hill Education
,
2016
).
57.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
, “
Contact angle, liquid film, and liquid–liquid and liquid–solid interfaces in model oil–brine–substrate systems
,”
J. Phys. Chem. C
120
,
11910
11917
(
2016
).
58.
G.
Mie
, “
Zur kinetischen theorie der einatomigen körper
,”
Ann. Phys.
316
,
657
697
(
1903
).
59.
J. E.
Jones
, “
On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature
,”
Proc. R. Soc. London, Ser. A
106
,
441
462
(
1924
).
60.
J. M.
Miguez
,
J. M.
Garrido
,
F. J.
Blas
,
H.
Segura
,
A.
Mejia
, and
M. M.
Pineiro
, “
Comprehensive characterization of interfacial behavior for the mixture CO2 + H2O + CH4: Comparison between atomistic and coarse grained molecular simulation models and density gradient theory
,”
J. Phys. Chem. C
118
,
24504
24519
(
2014
).
61.
J. M.
Garrido
,
H.
Quinteros-Lama
,
J. M.
Míguez
,
F. J.
Blas
, and
M. M.
Piñeiro
, “
On the physical insight into the barotropic effect in the interfacial behavior for the H2O + CO2 mixture
,”
J. Phys. Chem. C
123
,
28123
28130
(
2019
).
62.
C.
Herdes
,
C.
Petit
,
A.
Mejía
, and
E. A.
Muller
, “
Combined experimental, theoretical, and molecular simulation approach for the description of the fluid-phase behavior of hydrocarbon mixtures within shale rocks
,”
Energy Fuels
32
,
5750
5762
(
2018
).
63.
O.
Lobanova
,
C.
Avendano
,
T.
Lafitte
,
E. A.
Müller
, and
G.
Jackson
, “
SAFT-γ force field for the simulation of molecular fluids. 4. A single-site coarse-grained model of water applicable over a wide temperature range
,”
Mol. Phys.
113
,
1228
1249
(
2015
).
64.
R. A.
Bartolomeu
and
L. F.
Franco
, “
Thermophysical properties of supercritical H2 from molecular dynamics simulations
,”
Int. J. Hydrogen Energy
45
,
16372
16380
(
2020
).
65.
C.
Herdes
,
T. S.
Totton
, and
E. A.
Müller
, “
Coarse grained force field for the molecular simulation of natural gases and condensates
,”
Fluid Phase Equilib.
406
,
91
100
(
2015
).
66.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
, “
Accurate statistical associating fluid theory for chain molecules formed from Mie segments
,”
J. Chem. Phys.
139
,
154504
(
2013
).
67.
C.
Avendano
,
T.
Lafitte
,
A.
Galindo
,
C. S.
Adjiman
,
G.
Jackson
, and
E. A.
Müller
, “
SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide
,”
J. Phys. Chem. B
115
,
11154
11169
(
2011
).
68.
W. A.
Steele
, “
The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms
,”
Surf. Sci.
36
,
317
352
(
1973
).
69.
K.
Kashefi
,
L. M.
Pereira
,
A.
Chapoy
,
R.
Burgass
, and
B.
Tohidi
, “
Measurement and modelling of interfacial tension in methane/water and methane/brine systems at reservoir conditions
,”
Fluid Phase Equilib.
409
,
301
311
(
2016
).
70.
Q.-Y.
Ren
,
G.-J.
Chen
,
W.
Yan
, and
T.-M.
Guo
, “
Interfacial tension of (CO2 + CH4) + water from 298 to 373 K and pressures up to 30 MPa
,”
J. Chem. Eng. Data
45
,
610
612
(
2000
).
71.
L. M.
Pereira
,
A.
Chapoy
,
R.
Burgass
,
M. B.
Oliveira
,
J. A.
Coutinho
, and
B.
Tohidi
, “
Study of the impact of high temperatures and pressures on the equilibrium densities and interfacial tension of the carbon dioxide/water system
,”
J. Chem. Thermodyn.
93
,
404
415
(
2016
).
72.
A.
Georgiadis
,
G.
Maitland
,
J. M.
Trusler
, and
A.
Bismarck
, “
Interfacial tension measurements of the (H2O + CO2) system at elevated pressures and temperatures
,”
J. Chem. Eng. Data
55
,
4168
4175
(
2010
).
73.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
74.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol.
1
.
75.
T.
Young
III
, “
An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
,
65
87
(
1805
).
76.
G.
Navascués
and
M.
Berry
, “
The statistical mechanics of wetting
,”
Mol. Phys.
34
,
649
664
(
1977
).
77.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
343
(
1949
).
78.
T.
Nakamura
,
S.
Kawamoto
, and
W.
Shinoda
, “
Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS
,”
Comput. Phys. Commun.
190
,
120
128
(
2015
).
79.
J.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
80.
J.
Xu
,
L.
Jia
,
C.
Dang
,
X.
Liu
, and
Y.
Ding
, “
Effects of solid–liquid interaction and mixture concentration on wettability of nano-droplets: Molecular dynamics simulations
,”
AIP Adv.
12
,
105313
(
2022
).
81.
C.
Chen
,
N.
Zhang
,
W.
Li
, and
Y.
Song
, “
Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions
,”
Environ. Sci. Technol.
49
,
14680
14687
(
2015
).
82.
P. E.
Theodorakis
,
E. A.
Müller
,
R. V.
Craster
, and
O. K.
Matar
, “
Modelling the superspreading of surfactant-laden droplets with computer simulation
,”
Soft Matter
11
,
9254
9261
(
2015
).
83.
Y.
Liang
,
S.
Tsuji
,
J.
Jia
,
T.
Tsuji
, and
T.
Matsuoka
, “
Modeling CO2–water–mineral wettability and mineralization for carbon geosequestration
,”
Acc. Chem. Res.
50
,
1530
1540
(
2017
).
84.
P. J.
Linstrom
and
W. G.
Mallard
, “
The NIST Chemistry WebBook: A chemical data resource on the internet
,”
J. Chem. Eng. Data
46
,
1059
1063
(
2001
).
85.
Y.
Yang
,
A. K. N.
Nair
,
M. F. A.
Che Ruslan
, and
S.
Sun
, “
Interfacial properties of the aromatic hydrocarbon + water system in the presence of hydrophilic silica
,”
J. Mol. Liq.
346
,
118272
(
2022
).
86.
W.
Yong
,
J.
Derksen
, and
Y.
Zhou
, “
The influence of CO2 and CH4 mixture on water wettability in organic rich shale nanopore
,”
J. Nat. Gas Sci. Eng.
87
,
103746
(
2021
).
87.
R. C.
Dutta
,
S.
Khan
, and
J. K.
Singh
, “
Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study
,”
Fluid Phase Equilib.
302
,
310
315
(
2011
).
88.
Y.
Yang
,
A. K. N.
Nair
,
M. F. A.
Che Ruslan
, and
S.
Sun
, “
Interfacial properties of the alkane + water system in the presence of carbon dioxide and hydrophobic silica
,”
Fuel
310
,
122332
(
2022
).
89.
H.
Esfandyari
,
M.
Hosseini
,
M.
Ali
,
S.
Iglauer
,
M.
Haghighi
, and
A.
Keshavarz
, “
Assessment of the interfacial properties of various mineral/hydrogen/water systems
,”
J. Energy Storage
60
,
106637
(
2023
).
90.
N.
Yekeen
,
A.
Al-Yaseri
,
B. M.
Negash
,
M.
Ali
,
A.
Giwelli
,
L.
Esteban
, and
J.
Sarout
, “
Clay-hydrogen and clay-cushion gas interfacial tensions: Implications for hydrogen storage
,”
Int. J. Hydrogen Energy
47
,
19155
19167
(
2022
).
91.
Y.
Yang
,
A. K.
Narayanan Nair
, and
S.
Sun
, “
Molecular dynamics simulation study of carbon dioxide, methane, and their mixture in the presence of brine
,”
J. Phys. Chem. B
121
,
9688
9698
(
2017
).
92.
Y.
Yang
,
M. F. A.
Che Ruslan
,
A. K.
Narayanan Nair
, and
S.
Sun
, “
Effect of ion valency on the properties of the carbon dioxide–methane–brine system
,”
J. Phys. Chem. B
123
,
2719
2727
(
2019
).
93.
Y.
Yang
,
M. F. A.
Che Ruslan
,
A. K.
Narayanan Nair
,
R.
Qiao
, and
S.
Sun
, “
Interfacial properties of the hexane + carbon dioxide + water system in the presence of hydrophilic silica
,”
J. Chem. Phys.
157
,
234704
(
2022
).
94.
T. A.
Ho
and
Y.
Wang
, “
Molecular origin of wettability alteration of subsurface porous media upon gas pressure variations
,”
ACS Appl. Mater. Interfaces
13
,
41330
41338
(
2021
).
95.
J.
Zhou
,
J.
Zhang
,
J.
Yang
,
Z.
Jin
, and
K. H.
Luo
, “
Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration
,”
Chem. Eng. J.
428
,
132020
(
2022
).

Supplementary Material

You do not currently have access to this content.